全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于修正Tanimoto系数的电视节目个性化推荐方法研究
Research on Personalized Recommendation Method of TV Programs Based on Modified Tanimoto Coefficient

DOI: 10.12677/HJDM.2021.113016, PP. 181-186

Keywords: Tanimoto系数,相似度,协同过滤算法,电视节目推荐
Tanimoto Coefficient
, Similarity, Collaborative Filtering Algorithm, TV Program Recommendation

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着互联网产业的发展,电视节目的个性化推荐已经成为了许多电视节目制作者和观众们的共同需求。为达到电视节目个性化推荐的目的,本文通过结合用户共同评分项和用户所有评分项之间的关系,将基于修正Tanimoto系数的推荐算法运用于电视节目个性化推荐的研究中。实验结果表明,本文所运用的算法具有一定的提高电视节目个性化推荐系统的精度的效果。
With the development of the Internet industry, the individualization of TV programs has become the common demand of many TV program makers and viewers. In order to achieve the purpose of personalized recommendation of TV programs, this paper combined the relationship between user common rating items and user all rating items, and applied the collaborative filtering recommen-dation algorithm modified Tanimoto coefficient to improve similarity measure in the research of personalized recommendation of TV programs. Experimental results show that the algorithm used in this paper can improve the accuracy of TV program personalized recommendation system to a certain extent.

References

[1]  Barragans-Martinez, A.B., Costa-Monatenegro, E., Burguillo, J.C., et al. (2010) Ahybrid Contene-Based and Item-Based Collaborative Filtering Approach to Recommend TV Programs Enhanced with Singular Value Decomposition. Infor-mation Sciences, 180, 4290-4311.
https://doi.org/10.1016/j.ins.2010.07.024
[2]  宋月亭. 基于用户特征的电视节目混合推荐算法研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2020.
[3]  陈娅昵, 苏岐芳. 基于协同过滤的电视产品营销推荐[J]. 台州学院学报, 2019, 41(3): 5-10+22.
[4]  张洪顺. 推荐系统中矩阵稀疏性问题的研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2018.
[5]  黄传飞, 万剑怡, 王明文, 李茂西. 协同过滤中一种项目综合相似度计算方法[J]. 山西大学学报(自然科学版), 2015, 38(2): 199-205.
[6]  文俊浩, 舒珊. 一种改进相似性度量的协同过滤推荐算法[J]. 计算机科学, 2014, 41(5): 68-71.
[7]  赵永生, 祁云嵩. 基于改进相似度计算方法的协同过滤算法研究[J]. 计算机与数字工程, 2021, 49(3): 447-450+541.
[8]  郭丽莎, 邓棉予, 李秋雨, 冯琪, 郭仲凯. 基于协同过滤算法的电视产品打包推荐[J]. 中南民族大学学报(自然科学版), 2020, 39(6): 655-660.
[9]  Wang, H., Shen, Z., Jiang, S., Sun, G. and Zhang, R. (2021) User-Based Collaborative Filtering Algorithm Design and Imple-mentation. Journal of Physics: Conference Series, 1757, Article ID: 012168.
https://doi.org/10.1088/1742-6596/1757/1/012168

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133