|
长江源区年最大洪峰流量与极端气候的关系分析
|
Abstract:
基于长江源区1960~2016年最大洪峰流量序列和气象资料,运用线性最小二乘法、Mann-Kendall显著性检验、Khronostat突变检验软件,分析了长江源区年最大洪峰流量的变化趋势和突变特征,并采用Spearman相关分析法探讨了洪水极值与极端气候指数之间的关系。结果表明:近57年直门达和沱沱河水文站的年最大洪峰流量均呈不显著增加趋势,变化速率分别为41.20 m3/(s?10a)和0.39 m3/(s?10a);直门达站年最大洪峰流量序列不存在突变现象,沱沱河站在1972和1995年分别发生显著减小和增大突变。长江源区7~9月1日最大降水量和连续5日最大降水量均呈不显著增加趋势,7~9月极端最高气温和极端最低气温均呈显著上升趋势,变暖速率分别为0.36℃/10a和0.32℃/10a。直门达站和沱沱河站的年最大洪峰流量均与其7~9月连续5日最大降水量显著相关,在直门达站还与7~9月极端最高气温显著负相关,沱沱河站则与7~9月极端最低气温存在显著正相关关系。研究成果可为长江源区水资源管理和防灾减灾提供科学参考。
Based on the annual maximum peak discharge (AMPD) series and meteorological observation data from 1960 to 2016 in the source region of the Yangtze River (SRYR), the trend and mutation characteristics of the AMPD were analyzed by using linear least squares method, Mann-Kendall significance test and Khronostat software. In addition, the correlations between the AMPD and extreme climate indices were explored by Spearman correlation analysis method. The results show that the AMPD at the Chumda and Tuotuohe hydrological station exhibit non-significant increasing trend in the past 57 years, with an increase rate of 41.20 and 0.39 m3/(s?10a), respectively. There is no abrupt change in the AMPD series at Chumda hydrological station, however, an abrupt decrease and increase occurred in 1972 and 1995 at the Tuotuohe hydrological station, respectively. The Max 1-day precipitation and the Max 5-day precipitation in July-September for the SRYR exhibit non-significant increasing trend. However, the maximum value of daily maximum temperature and the minimum value of daily minimum temperature in July-September for the SRYR exhibit significant increasing trend, with an increase rate of 0.32?C and 0.36?C/10a, respectively. The AMPD at both stations is significantly correlated with the Max 5-day precipitation in July-September. In addition, the AMPD at the Chumda hydrological station is significantly negatively correlated with the maximum value of daily maximum temperature in July-September, while there is a significantly positive correlation between the AMPD and the minimum value of daily minimum temperature in July-September at Tuotuohe hydrological station. The research results can provide a scientific basis for water resource management and disaster prevention/mitigation policies in the SRYR.
[1] | 《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015.
Compilation Committee of “The Third National Assessment Report on Climate Change”. The third national assessment report on climate change. Beijing: Science Press, 2015. (in Chinese) |
[2] | 游庆龙, 康世昌, 李潮流, 等. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232-236.
YOU Qinglong, KANG Shichang, LI Chaoliu, et al. Change in extreme temperature over Sanjiangyuan region in the period from 1961 to 2005. Resources and Environment in the Yangtze Basin, 2008, 17(2): 232-236. (in Chinese) |
[3] | 强安丰, 魏加华, 解宏伟. 青海三江源地区气温与降水变化趋势分析[J]. 水电能源科学, 2018, 36(2): 10-14.
QIANG Anfeng, WEI Jiahua and XIE Hongwei. Trend analysis of temperature and precipitation in Sanjiangyuan region of Qinghai Province. Water Resources and Power, 2018, 36(2): 10-14. (in Chinese) |
[4] | 王根绪, 李娜, 胡宏昌. 气候变化对长江黄河源区生态系统的影响及其水文效应[J]. 气候变化研究进展, 2009, 5(4): 202-208.
WANG Genxu, LI Na and HU Hongchang. Hydrologic effect of ecosystem responses to climatic change in the Source Regions of Yangtze River and Yellow River. Advances in Climate Change Research, 2009, 5(4): 202-208. (in Chinese) |
[5] | 梁川, 侯小波, 潘妮. 长江源高寒区域降水和径流时空变化规律分析[J]. 南水北调与水利科技, 2011, 9(1): 53-59.
LIANG Chuan, HOU Xiaobo and PAN Ni. Spatial and temporal variations of precipitation and runoff in the Source Region of the Yangtze River. South-to-North Water Diversion and Water Science & Technology, 2011, 9(1): 53-59. (in Chinese) |
[6] | 蒋佑承, 刘蛟, 张越关, 等. 长江源区降水变化的时空分布规律分析[J]. 水资源研究, 2020, 9(3): 335-343.
JIANG Youcheng, LIU Jiao, ZHANG Yueguan, et al. Analysis of spatiotemporal distribution of precipitation changes in the source region of the Yangtze River. Journal of Water Resources Research, 2020, 9(3): 335-343. (in Chinese) |
[7] | 齐冬梅, 李跃清, 陈永仁, 等. 气候变化背景下长江源区径流变化特征及其成因分析[J]. 冰川冻土, 2015, 37(4): 1075-1086.
QI Dongmei, LI Yueqing, CHEN Yongren, et al. Changing characteristics and cause analysis of the runoff in the source re-gions of the Yangtze River under the background of climate change. Journal of Glaciology and Geocryology, 2015, 37(4): 1075-1086. (in Chinese) |
[8] | 李其江. 长江源径流演变及原因分析[J]. 长江科学院院报, 2018, 35(8): 1-5.
LI Qijiang. Investigation of runoff evolution at the Headwaters of Yangtze River and its driving forces. Journal of Yangtze River Scientific Research Institute, 2018, 35(8): 1-5. (in Chinese) |
[9] | LI, Z., CAO, L. J., ZHU, Y. N., et al. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960-2013. Journal of Meteorological Research, 2016, 30(1): 53-66.
https://doi.org/10.1007/s13351-016-5054-x |
[10] | 严中伟, 李珍, 夏江江. 气候序列的均一化——定量评估气候变化的基础[J]. 中国科学: 地球科学, 2014, 44(10): 2101-2111.
YAN Zhongwei, LI Zhen and XIA Jiangjiang. Homogenization of climate series: The basis for assessing climate changes. Science China: Earth Sciences, 2014, 44(10): 2101-2111. (in Chinese) |
[11] | WANG, X. L., YANG, F. RHtests V4 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, 2014. http://etccdi.pacificclimate.org/software.shtml |
[12] | ZHANG, X. B., YANG, F. RClimDex (1.0) User Manual. Ottawa: Climate Research Branch Environment Canada, 2004.
http://etccdi.pacificclimate.org/RClimDex/RClimDexUserManual.doc |
[13] | 褚茜茜, 陈进, 陈广才. 长江源区1978~2009年径流极值序列变化趋势分析[J]. 长江科学院院报, 2014, 31(2): 16-19.
CHU Xixi, CHEN Jin and CHEN Guangcai. Variation trend of extreme runoff series in the Source Region of Yangtze River from 1978 to 2009. Journal of Yangtze River Scientific Research Institute, 2014, 31(2): 16-19. (in Chinese) |
[14] | TRAORE, V., NDIAYE, M., MBOW, C., et al. Khronostat model as statistical analysis tools in low casamance river basin, Senegal. World Environment, 2017, 7(1): 10-22. |
[15] | 唐雄朋, 吕海深. 沱沱河流域水文气象要素变化特征分析[J]. 水电能源科学, 2016, 34(12): 37-40.
TANG Xiongpeng, LV Haishen. Temporal variation of main hydrologic meteorological elements in Tuotuohe River Basin. Water Resources and Power, 2016, 34(12): 37-40. (in Chinese) |
[16] | SHEN, Y. P., WANG, G. Y., WANG, G. X., et al. Impacts of climate change on glacial water resources and hydrological cycles in the Yangtze River source region, the Qing-hai-Tibetan Plateau, China: A progress report. Sciences in Cold and Arid Regions, 2009, 1(6): 475-495. |
[17] | ZHANG, Y., LIU, S. Y., XU, J. L., et al. Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China. Environmental Geology, 2008, 56(1): 59-68.
https://doi.org/10.1007/s00254-007-1139-2 |
[18] | 何秋乐, 匡星星, 梁四海, 等. 1966~2015年长江源冰川融水变化及其对径流的影响: 以冬克玛底河流域为例[J]. 人民长江, 2020, 51(2): 77-85.
HE Qiule, KUANG Xingxing, LIANG Sihai, et al. Glacial meltwater variation in Dongkemadi River Basin of Yangtze River source from 1966 to 2015 and its influence on runoff. Yangtze River, 2020, 51(2): 77-85. (in Chinese) |