|
基于改进遗传算法的梯级水电站优化调度方法
|
Abstract:
梯级水电灵活性较强广泛应用于电网调峰、调频,然而梯级水电站群约束众多,是高度复杂的混合整数非线性规划问题,求解难度较大。为此本文提出一种改进的遗传算法对梯级水电站进行优化求解,针对遗传算法时效性差、容陷入局部最优的缺点,本文从初始解的产生、交叉变异概率选取、精英个体保存三个方面对遗传算法进行改进。以一个二级水电站为例进行验证,结果表明,改进后遗传算法收敛更快、求解效率更高,只需要59.30 s,即可得出结果;在保证其它约束不变的情况下,梯级水电多发45.56万kW?h。能有效满足梯级水电联合优化调度时效性与经济性的要求。
Cascade hydropower has strong flexibility and is widely used in peak load regulation and frequency regulation of power grid. However, there are many constraints of cascade hydropower station group, which is a highly complex mixed integer nonlinear programming problem and difficult to solve. In this paper, an improved genetic algorithm is proposed to solve the problem of cascade hydropower stations. Aiming at the shortcomings of poor timeliness and local optimum of genetic algorithm, this paper improves the genetic algorithm from three aspects: the generation of initial solution, the selection of cross mutation probability and the preservation of elite individuals. Taking a two-stage hydropower station as an example, the results show that the improved genetic algorithm has faster convergence and higher efficiency, and it only takes 59.30 s to get the result; under the condition of keeping other constraints unchanged, the cascade hydropower station can generate 455,600 kW?h more. It can effectively meet the requirements of timeliness and economy of cascade hydropower joint optimal operation.
[1] | 李锐, 杜治洲, 杨佳刚, 等. 中国水电开发现状及前景展望[J]. 水科学与工程技术, 2019(6): 73-78. |
[2] | LI Rui, DU Zhizhou, YANG Jiagang, et al. Present situation and prospect of hydropower development in China. Water Science and Engineering Technology, 2019(6): 73-78. (in Chinese) |
[3] | 程春田, 武新宇, 申建建, 等. 亿千瓦级时代中国水电调度问题及其进展[J]. 水利学报, 2019, 50(1): 112-123. |
[4] | CHENG Chuntian, WU Xinyu, SHEN Jianjian, et al. Hydropower dispatching problems and its progress in China in the 100 MW era. Journal of Water Conservancy, 2019, 50(1): 112-123. (in Chinese) |
[5] | 刘方, 张粒子. 流域梯级水电优化调度模型与方法研究综述[J]. 华北电力大学学报(自然科学版), 2017, 44(5): 81-90. |
[6] | LIU Fang, ZHANG Zizi. Review on optimal operation model and method of cascade hydropower in River Basin. Journal of North China Electric Power University (Natural Science Edition), 2017, 44(5): 81-90. (in Chinese) |
[7] | 冯仲恺, 牛文静, 程春田, 等. 大规模水电系统优化调度降维方法研究II: 方法实例[J]. 水利学报, 2017, 48(3): 270-278. |
[8] | FENG Zhongkai, NIU Wenjing, CHENG Chuntian, et al. Study on dimensionality reduction method for optimal operation of large-scale hydropower system II: Method example. Journal of Water Conservancy, 2017, 48(3): 270-278. (in Chinese) |
[9] | 李源, 初壮. 基于GPU的拉格朗日乘子优化动态经济调度[J]. 吉林电力, 2020, 48(5): 19-23. |
[10] | LI Yuan, CHU Zhuang. GPU based Lagrange multiplier optimal dynamic economic dispatch. Jilin Electric Power, 2020, 48(5): 19-23. (in Chinese) |
[11] | 陈诚. 基于随机线性规划的水库概率约束调度模型与方法[D]: [博士学位论文]. 武汉: 华中科技大学, 2019. |
[12] | CHEN Cheng. Probabilistic constrained reservoir operation model and method based on stochastic linear programming. Ph.D. Thesis, Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese) |
[13] | 王健. 水火电系统中长期非线性调度模型及方法研究[D]: [博士学位论文]. 大连: 大连理工大学, 2018. |
[14] | WANG Jian. Research on medium and long term nonlinear dispatching model and method of hydro thermal power system. Ph.D. Thesis, Dalian: Dalian University of Technology, 2018. (in Chinese) |
[15] | 申建建, 张秀飞, 王健, 等. 求解水电站日负荷优化分配的混合整数非线性规划模型[J]. 电力系统自动化, 2018, 42(19): 34-40. |
[16] | SHEN Jianjian, ZHANG Xiufei, WANG Jian, et al. Mixed integer nonlinear programming model for optimal daily load distribution of hydropower stations. Power System Automation, 2018, 42(19): 34-40. (in Chinese) |
[17] | 宋坤, 陈博, 余楷, 等. 基于动态规划算法的水电站机组组合问题求解[J]. 通信电源技术, 2017, 34(4): 133-134. |
[18] | SONG Kun, CHEN Bo, YU Kai, et al. Solving unit commitment problem of hydropower station based on dynamic programming algorithm. Communication Power Technology, 2017, 34(4): 133-134. (in Chinese) |
[19] | 庹青山. 水库发电调度的随机参考线方法研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2018. |
[20] | TUO Qingshan. Research on stochastic reference line method for reservoir power generation dispatching. Master’s Thesis, Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese) |
[21] | 冯仲恺, 牛文静, 程春田, 等. 大规模水电系统优化调度降维方法研究I: 理论分析[J]. 水利学报, 2017, 48(2): 146-156. |
[22] | FENG Zhongkai, NIU Wenjing, CHENG Chuntian, et al. Study on dimensionality reduction method for optimal operation of large-scale hydropower system I: Theoretical analysis. Journal of Water Conservancy, 2017, 48(2): 146-156. (in Chinese) |
[23] | 夏军, 叶超, 魏洁, 等. 计及供电成本的小水电群经济调度优化模型研究[J]. 水力发电, 2019, 45(11): 89-94. |
[24] | XIA Jun, YE Chao, WEI Jie, et al. Study on economic dispatch optimization model of small hydropower group considering power supply cost. Hydropower, 2019, 45(11): 89-94. (in Chinese) |
[25] | 毕海英. 模拟退火遗传算法在水电工程施工资源均衡优化中的应用研究[J]. 水利技术监督, 2018(5): 108-112. |
[26] | BI Haiying. Study on the application of simulated annealing genetic algorithm in the construction resource balance optimization of hydropower projects. Water Conservancy Technical Supervision, 2018(5): 108-112. (in Chinese) |