|
基于时频图像与迁移学习的雷达信号调制类型识别算法
|
Abstract:
针对雷达信号调制类型识别领域中基于人工提取脉内特征的算法存在的特征提取步骤繁琐、泛化能力弱的缺点,本文提出了一种基于同步压缩短时傅里叶变换(the STFT-based synchrosqueezing transform, FSST)与迁移深度学习的调制类型识别算法。该算法借助深度学习在图像识别领域的优势,使用FSST将信号转换为时频图像并做预处理后作为数据集用于ResNet101网络的训练,同时还借助迁移学习的方法优化了网络的特征提取的能力、加速了模型的训练。考虑到复杂相位编码雷达信号的时频图像较为复杂,具有一定的代表性,本文以多相编码与多时编码信号为研究对象。实验结果表明,本文算法能够有效区分不同调制类型以及相同调制类型不同调制参数的相位编码信号。
Aiming at the shortcomings of cumbersome feature extraction steps and weak generalization ability of algorithms based on artificially extracting intra-pulse features in the field of radar signal modulation type recognition, this paper proposes a synchronous compression based short-time Fourier transform and transfer deep learning modulation type recognition algorithm. The algorithm uses the advantages of deep learning in the field of image recognition, uses FSST to convert the signal into a time-frequency image and preprocesses it as a data set for the training of the ResNet101 network. At the same time, it also optimizes the feature extraction of the network by means of transfer learning. Ability, accelerate the training of the model, and reduce the training requirements for the size of the data set. Considering that the time-frequency images of complex phase-coded radar signals are more complex and representative, this paper takes polyphase-coded and multi-time-coded signals as the research object. Experimental results show that the proposed algorithm can effectively distinguish phase-encoded signals with different modulation types and the same modulation type with different modulation parameters.
[1] | 张穆清, 王华力, 倪雪, 等. 基于深度学习与支持向量机的低截获概率雷达信号识别[J]. 科技导报, 2019, 37(4): 69-75. |
[2] | Li, D., Yang, R., Li, X., et al. (2020) Radar Signal Modulation Recognition Based on Deep Joint Learning. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2978875 |
[3] | Yu, H.H., Yan, X.P., Liu, S.K., et al. (2021) Radar Emitter Multi-Label Recognition Based on Residual Network. Defence Technology. |
[4] | Ghadimi, G., Norouzi, Y., Bayderkhani, R., et al. (2020) Deep Learning-Based Approach for Low Probability of Intercept Radar Signal Detection and Classification. Journal of Communications Technology & Electronics, 65, 1179.
https://doi.org/10.1134/S1064226920100034 |
[5] | Daubechies, I., Lu, J. and Wu, H. (2011) Synchrosqueezed Wavelet Transforms: an Empirical Mode Decomposition-Like Tool. Applied and Computational Harmonic Analysis, 30, 243-261.
https://doi.org/10.1016/j.acha.2010.08.002 |
[6] | 俞昆, 罗志涛, 李鸿飞, 等. 广义参数化同步压缩变换及其在旋转机械振动信号中的应用[J]. 机械工程学报, 2019, 55(11): 149-159. |
[7] | 高威, 李莎. 同步压缩变换及其在机械振动信号处理中的应用[J]. 时代农机, 2017, 44(4): 70-71. |
[8] | 张雁. 同步压缩小波变换及其在地震资料处理中的应用研究[D]: [硕士学位论文]. 东营: 中国石油大学(华东), 2018. |
[9] | 李振春, 孙苗苗, 王姣, 等. 时间域和频率域二阶同步压缩变换及其在储层识别中的应用[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 36-44. |
[10] | 张黎明, 张小栋, 陆竹风, 等. 用于稳态视觉诱发电位特征频率提取的同步压缩短时傅里叶变换方法[J]. 西安交通大学学报, 2017, 51(2): 20-26, 46. |
[11] | 薛雷, 曾宏伟, 覃程锦, 等. 采用同步压缩变换和能量熵的机器人加工颤振监测方法[J]. 西安交通大学学报, 2019, 53(8): 24-30, 89. |
[12] | 潘宏侠, 张玉学. 基于SST时频图纹理特征的供输弹系统故障诊断[J]. 振动与冲击, 2020, 39(362): 132-137, 175. |
[13] | Thakur, G. and Wu, H. (2011) Synchrosqueezing-Based Recovery of Instantaneous Frequency from Nonuniform Samples. Siam Journal on Mathematical Analysis, 43, 2078-2095. https://doi.org/10.1137/100798818 |
[14] | Oberlin, T., Meignen, S. and Perrier, V. (2014) The Fourier-Based Synchrosqueezing Transform. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, 4-9 May 2014, 315-319.
https://doi.org/10.1109/ICASSP.2014.6853609 |
[15] | He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[16] | 张驰, 郭媛, 黎明, 等. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 1-15. |
[17] | Pan, Sinno, Jialin. (2010) A Survey on Transfer Learning. IEEE Transactions on Knowledge & Data Engineering, 22, 1345-1359. https://doi.org/10.1109/TKDE.2009.191 |
[18] | Yosinski, J., Clune, J., Bengio, Y., et al. (2014) How Transferable Are Features in Deep Neural Networks? Annual Conference on Neural Information Processing Systems, Montreal, 8-13 December 2014, 3320. |