全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进SIFT算法及定位信息的建筑物识别系统
Building Recognition System Based on Improved SIFT Algorithm and Positioning Information

DOI: 10.12677/JISP.2021.103012, PP. 106-112

Keywords: 建筑物识别,SIFT特征,直线检测,Canny边缘检测,特征匹配
Building Recognition
, SIFT Feature, Straight Line Detection, Canny Edge Detection, Feature Matching

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决小范围、图像数据较少区域内传统建筑物识别系统精度偏低的问题,本文提出一种基于改进SIFT算法与GPS定位信息相结合的建筑物识别系统,并在系统中加入对建筑物存在可能性预测的预处理机制,进一步提高准确性和快速性。实验验证结果表明,该方法为可行有效的且实际效果良好。
In order to solve the general problem, that is, the accurate recognition rate is low in a small extent or when the image resources are few and scattered. This article puts forward a building recognition system that combines GPS positioning information with an improved SIFT algorithm, and adds a pretreatment mechanism for predicting the possibility of the presence of the building in the system, further reducing mismatches and improving response speed. Final verification shows that this research is actually effective.

References

[1]  王泽泓, 刘厚泉. 基于迁移学习与自适应特征融合的建筑物识别[J]. 计算机技术与发展, 2019, 29(12): 40-43.
[2]  李松霖, 范海生, 陈秀万. 基于特征线匹配的城市建筑物识别方法研究[J]. 遥感技术与应用, 2012, 27(2): 190-196.
[3]  柳静华. 面向移动应用的建筑物图像识别技术研究[D]:[硕士学位论文]. 北京: 北方工业大学, 2015.
[4]  蔡兴泉, 柳静华. 建筑物图像识别系统设计与实现[J]. 现代计算机(专业版), 2015(14): 18-20.
[5]  刘芯彤, 张辉, 邓志强. 基于SIFT算法的建筑物图像识别[J]. 科学与财富, 2019(20): 350.
[6]  颜廷法. 基于图像序列的特定建筑物识别算法[J]. 泰山学院学报, 2018, 40(3): 68-72.
[7]  Lowe, D.G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60, 91-110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94
[8]  Xu, X.B., et al. (2021) LiDAR-Camera Calibration Method Based on Ranging Statistical Characteristics and Improved RANSAC Algorithm. Robotics and Autonomous Systems, 141, Article No. 103776.
https://doi.org/10.1016/j.robot.2021.103776

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133