全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

C3N4负载Ru催化氨硼烷水解产氢性能研究
Ru/C3N4 Catalysts for Hydrogen Generation via Hydrolysis of NH3BH3

DOI: 10.12677/HJCET.2021.114030, PP. 219-226

Keywords: 钌,氨硼烷,氮化碳,产氢
Ru
, NH3BH3, C3N4, Hydrogen Generation

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用浸渍化学还原法制备氮化碳负载Ru催化剂,考察了还原剂NaBH4用量、活性组分Ru的负载量等催化剂制备条件及转速、催化剂用量、反应温度等反应条件对Ru/C3N4催化剂催化NH3BH4水解产氢性能的影响。结果表明,在活性组分前体RuCl3与还原剂NaBH4物质的量比为1:5,活性组分Ru的负载量为wt.0.4%,催化剂用量为0.05 g,Ru/C3N4催化剂催化氨硼烷水解产氢的TOF为227.8 mol H2?mol?1Co?min?1。反应温度越高,反应物及产物传质越快,氨硼烷活化分子数目越多,氨硼烷产氢速率越快。催化剂用量越多,Ru活性位越多,氨硼烷产氢的速率越快;当转速为810 r/min,外扩散限制消除,氨硼烷产氢速率最快。Ru/C3N4催化剂催化氨硼烷水解产氢的活化能为39.20 kJ/mol,说明Ru/C3N4催化氨硼烷水解产氢速率受温度影响极小。
C3N4 supported Ru catalysts were synthesized with an impregnation-reduction method. The prepared catalysts were evaluated for the hydrogen generation via catalytic hydrolysis of BH3NH3. Effect of catalytic activity was investigated by varying the impregnated Ru loading, amount of NaBH4 as reducing agent during the preparation procedure, and was studied under different reaction conditions, such as reduction temperature, amount of used catalyst as well as the stirring speed. It was found that the TOF of 227.8 mol H2?mol?1Ru?min?1 was achieved by using 0.05 g of Ru/C3N4 with Ru loading of 0.4 wt.%, while the molar ratio of RuCl3:NaBH4 was 1:5. Notably, with increasing reaction temperature, mass transfer of reactant and product was accelerated, and more BH3NH3 molecules were activated, leading to higher rate of hydrogen generation. In addition, more active sites of Ru were exposed with enhancing the amount of used catalyst, resulting in the enhancement of the reaction rate towards hydrogen formation as well. When the stirring speed was raised up to 810 r/min, external diffusion could be eliminated, leading to the highest reaction rate towards hydrogen generation. According to the kinetic study, the activation energy for hydrolysis of BH3NH3 towards hydrogen generation over Ru/C3N4 is 39.2 kJ?mol?1. This indicates that the reaction temperature has almost no effect on catalytic activity towards hydrogen generation.

References

[1]  徐宏坤, 陈梦寰, 潘亚熙, 彭薇薇, 张淑娟, 张翊青, 等. 纳米金属Ru-Co嵌入UTO-66NH2协同催化氨硼烷水解产氢研究[J]. 湖北大学学报(自然科学版), 2019, 41(1): 77-82.
[2]  李慧珍, 王梵远, 陈学年. 氨硼烷: 一种高性能化学储氢材料[J]. 科学通报, 2014, 59(19): 1823-1837.
[3]  李燕, 邓雨真, 俞晶铃, 黎四芳. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展, 2019, 38(12): 5330-5338.
[4]  Olu, P.-Y., Fabien, D., Giuseppe, C., Chatenet, M. and Job, N. (2015) Investigation of Platinum and Palladium as Potential Anodic Catalysts for Direct Borohydride and Ammonia Borane Fuel Cells. Journal of Power Sources, 297, 492-503.
https://doi.org/10.1016/j.jpowsour.2015.08.022
[5]  Peng, S.G., Liu, J.C., Wang, F.Y. and Wang, F. (2015) An Improved Preparation of Graphene Supported Ultrafine Ruthenium (0) NPs: Very Active and Durable Catalysts for H2 Generation from Methanolysis of Ammonia Borane. International Journal of Hydrogen Energy, 40, 10856-10866.
https://doi.org/10.1016/j.ijhydene.2015.06.113
[6]  杨宇雯, 冯刚, 卢章辉, 胡娜, 张飞, 陈祥树. 原位合成钴/还原氧化石墨烯纳米粒子催化氨硼烷制氢(英文) [J]. 物理化学学报,2014, 30(6): 1180-1186.
[7]  王海霞, 周丽敏, 陶占良, 陈军. Cu@Co纳米颗粒合成及催化氨硼烷水解放氢性能[J]. 功能材料与器件学报, 2015, 21(4): 7-12.
[8]  徐凤勤, 胡小飞, 程方益, 梁静, 陶占良, 陈军. 多孔碳负载镍纳米颗粒的制备及催化氨硼烷水解制氢[J]. 无机化学学报, 2015, 31(1): 103-108.
[9]  桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展[J]. 材料导报, 2017, 31(17): 27-33.
[10]  孙海杰, 陈凌霞, 张玉凤, 安冬东, 刘聪. Co-B/ZrO2催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2019, 51(3): 72-76.
[11]  Hu, S.C. and Chen, Y.W. (1997) Partial Hydrogenation of Benzene to Cyclohexene on Ruthenium Catalysts Supported on La2O3-ZnO Binary Oxides. Industrial & Engineering Chemistry Research, 36, 5153-5159.
https://doi.org/10.1021/ie970300y
[12]  朱玉玲, 郑修成, 刘蒲. 磁性花生壳负载钯催化剂的制备及催化氨硼烷释氢性能[J]. 信阳师范学院学报(自然科学版), 2019, 32(2): 276-280.
[13]  陈建民, 卢章辉, 熊丽华. Ru/Ce(OH)CO3纳米复合材料催化氨硼烷水解产氢(英文) [J].无机化学学报, 2016, 32(10): 1816-1824.
[14]  Fan, G., Liu, Q., Tang, D., Li, X., Bi, J. and Gao, D. (2016) Nanodiamond Supported Ru Nanoparticles as an Effective Catalyst for Hydrogen Evolution from Hydrolysis of Ammonia Borane. International Journal of Hydrogen Energy, 41, 1542-1549.
https://doi.org/10.1016/j.ijhydene.2015.10.083
[15]  Yao, Q., Shi, W., Feng, G., Lu, Z.-H., Zhang, X., Tao, D., et al. (2014) Ultrafine Ru Nanoparticles Embedded in SiO2 Nanospheres: Highly Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane. Journal of Power Sources, 257, 293-299.
https://doi.org/10.1016/j.jpowsour.2014.01.122
[16]  张旭梅, 韩贺, 高庆玲, 刘阳, 李悦, 马晓艳. 钌/氮掺杂石墨烯催化硼氢化钠水解制氢的研究[J]. 化学研究与应用, 2020, 32(1): 67-71.
[17]  马瑜隆, 魏永生, 戴长庆. 电镀法制备Ru/Ni-foam催化剂及其催化硼氢化钠产氢性能研究[J]. 北京化工大学学报(自然科学版), 2018, 45(2): 10-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133