|
Botanical Research 2021
基于代谢组学揭示海藻糖促进长春花拮抗低温胁迫机制
|
Abstract:
长春碱和长春质碱具有高效抗癌活性,而长春花是其重要来源植物。随着人们对抗癌药物原材料需求的增加,长春花(Catharanthus roseus)种植范围逐渐由南向北延伸。随着纬度增加,气温的降低成为长春花种植、繁育过程中重要的胁迫条件。海藻糖作为一种信号分子能有效地调节植物应对低温胁迫,而海藻糖促进长春花拮抗低温胁迫的代谢机制仍亟待研究与解决。本实验研究发现:低温胁迫后外源施加海藻糖,叶绿素含量与抗氧化酶活性呈现先升高后降低趋势;MDA含量显著降低,初步验证海藻糖可以提高长春花对低温的耐受性。GC-MS及PLS-DA分析从59种初生代谢产物中发现23种化合物具有显著差异。糖类化合物(如甘露糖)以及一些抗逆物质(如尸胺、硅烷)低温处理后明显积累,而外源添加海藻糖后其含量显著下降。有机酸类化合物像丙酸、苹果酸、没食子酸等却表现出相反的趋势。说明海藻糖通过调控一些糖类、有机酸和抗逆性等初生代谢物来减少低温带来的伤害。通过real-time PCR对长春花酚类和生物碱代谢途径关键酶基因的表达量以及UPLC-MS测定长春花6种生物碱的变化情况皆可证明长春花次生代谢产物在植物响应低温胁迫过程中也参与其中。
Vinblastine and vinblastine have highly effective anti-cancer activity, and Catharanthus roseus is an important source of plants. With the increasing demand for raw materials for anti-cancer drugs, the cultivation range of Catharanthus roseus gradually extends from south to north. As the latitude increases, the decrease of temperature becomes an important stress condition in the process of periwinkle planting and breeding. As a signal molecule, trehalose can effectively regulate plants to respond to low temperature stress, and the metabolic mechanism of trehalose in promoting Catharanthus roseus to antagonize low temperature stress still needs to be studied and resolved urgently. This experimental study found that the chlorophyll content and antioxi-dant enzyme activity showed a trend of first increasing and then decreasing after the exogenous application of trehalose after low temperature stress; the MDA content was significantly re-duced, which preliminarily verified that trehalose can improve the tolerance of Catharanthus roseus to low temperature. GC-MS and PLA-SD analysis revealed significant differences in 23 compounds from 59 primary metabolites. Carbohydrate compounds (such as mannose) and some anti-stress substances (such as cadaverine, silane) accumulate significantly after low tem-perature treatment, while the content of trehalose decreases significantly after exogenous addi-tion of trehalose. Organic acid compounds like propionic acid, malic acid, gallic acid, etc. show the opposite trend. It shows that trehalose reduces the damage caused by low temperature by regulating some primary metabolites such as sugars, organic acids and stress resistance. The expression of key enzyme genes in the phenol and alkaloid metabolism pathways of Catharanthus roseus by real-time PCR and the changes of the six alkaloids of Catharanthus roseus by UPLC-MS can prove that the secondary metabolites of Catharanthus roseus respond to low temperature stress in plants.
[1] | 祖元刚, 罗猛, 牟璠松, 等. 长春花生物碱成分及其药理作用研究进展[J]. 天然产物研究与开发, 2006, 18(2): 325-329. |
[2] | Pan, Q.F., Mustafa, N.R., Tang, K.X., Choi, Y.H. and Verpoorte, R. (2016) Monoterpenoid Indole Alkaloids Biosynthesis and Its Regulation in Catharanthus roseus a Literature Review from Genes to Metabolites. Phytochemistry Reviews, 15, 221-250. https://doi.org/10.1007/s11101-015-9406-4 |
[3] | Das, A., Sarkar, S., Bhattacharyya, S., et al. (2020) Biotechnological Advancements in Catharanthus roseus (L.) G. Don. Applied Microbiology and Biotechnology, 104, 4811-4835. https://doi.org/10.1007/s00253-020-10592-1 |
[4] | Wang, C., et al. (2020) Application of a Trait-Based Species Screening Framework for Vegetation Restoration in a Tropical Coral Island of China. Functional Ecology, 34, 1193-1204. https://doi.org/10.1111/1365-2435.13553 |
[5] | Astrid, W. (2002) The Function of Trehalose Biosynthesis in Plants. Phytochemistry, 60, 437-440.
https://doi.org/10.1016/S0031-9422(02)00137-1 |
[6] | 叶玉秀, 陆大雷, 王飞兵, 等. 干旱胁迫下外源海藻糖对糯玉米幼苗生理特性的影响[J]. 玉米科学, 2020, 139(3): 84-90. |
[7] | 聂凌鸿. 海藻糖研究进展[J]. 粮食与油脂, 2002(8): 44-45. |
[8] | Yang, N., Zhang, Y., Liu, J., et al. (2020) Network during Light-Induced Cotyledons Opening and Greening in Astragalus membranaceus. Journal of Plant Interactions, 51, 358-370. https://doi.org/10.1080/17429145.2020.1831088 |
[9] | Tursun, A.O. and Telci, I. (2020) The Effects of Carbon Dioxide and Temperature on Essential Oil Composition of Purple Basil (Ocimum basilicum L.). Journal of Essential Oil Bearing Plants, 23, 255-265.
https://doi.org/10.1080/0972060X.2020.1741452 |
[10] | 袁园, 唐延林. 偏最小二乘法结合主成分分析对黑茶产地的研究[J]. 大学物理实验, 2020, 33(1): 50-55. |
[11] | Lu, X., Chen, Q., Cui, X., et al. (2021) Comparative Metabolomics of Two Saline-Alkali Tolerant Plants Suaeda glauca and Puccinellia tenuiflora Based on GC-MS Platform. Natural Product Research, 35, 499-502.
https://doi.org/10.1080/14786419.2019.1633647 |
[12] | 成京晋, 李浩, 早浩龙, 等. 植物响应低温胁迫的分子调控机制[J]. 分子植物育种, 2021, 19(9): 3104-3115. |
[13] | 程邵丽. 温度对白及光合特性及生理生化指标的影响[D]: [硕士学位论文]. 郑州: 郑州大学, 2019. |
[14] | 王芳, 王淇, 赵曦阳. 低温胁迫下植物的表型及生理响应机制研究进展[J]. 分子植物育种, 2019, 17(5): 5144-5153. |
[15] | Pradhan, S., Goswami, A.K., Singh, S.K., Prakash, J. and Kumar, A. (2017) Physiological and Biochemical Alterations Due to Low Temperature Stress in Papaya Genotypes. Indian Journal of Horticulture, 74, 491.
https://doi.org/10.5958/0974-0112.2017.00096.2 |
[16] | Xu, C., Wang, M.T., Yang, Z.Q. and Zheng, Q.T. (2020) Low Temperature and Low Irradiation Induced Irreversible Damage of Strawberry Seedlings. Photosynthetica, 58, 447-449. https://doi.org/10.32615/ps.2020.001 |
[17] | Anjum, S.A., Ran, W., Niu, J.H., Zohaib, A. and Zong, X.F. (2016) Exogenous Application of ALA Regulates Growth and Physiological Characters of Leymus chinensis (Trin.) Tzvel. under Low Temperature Stress. Journal of Animal and Plant Sciences, 26, 1354-1360. |
[18] | 陈琪. 镉胁迫对长春花生长代谢的影响及其它元素的调控作用[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2014. |
[19] | Huang, C., Qin, N., Sun, L., Yu, M., Hu, W. and Qi, Z. (2018) Selenium Improves Physiological Parameters and Alleviates Oxidative Stress in Strawberry Seedlings under Low-Temperature Stress. International Journal of Molecular Sciences, 19, 1913. https://doi.org/10.3390/ijms19071913 |
[20] | Latef, A.A.H.A. and He, C.X. (2011) Arbuscular Mycorrhizal Influence on Growth, Photosynthetic Pigments, Osmotic Adjustment and Oxidative Stress in Tomato Plants Subjected to Low Temperature Stress. Acta Physiologiae Plantarum, 33, 1217-1225. https://doi.org/10.1007/s11738-010-0650-3 |
[21] | Rivero, R.M., Ruiz, J.M., García, P., López-Lefebre, L. and Romero, L. (2002) Response of Oxidative Metabolism in Watermelon Plants Subjected to Cold Stress. Functional Plant Biology, 29, 643. https://doi.org/10.1071/PP01013 |
[22] | Ma, J.-H., Xing, G.F., Yang, X.H., Wang, Y.G. and Du, H.-L. (2015) Effects of Exogenous EBR and NO Signal on Antioxidant System and Low Response Gene Expression under Cold Stress on Maize Embryo. The Journal of Applied Ecology, 26, 1411-1418. |
[23] | Yang, Q., Zhang, Z., Rao, J., et al. (2014) Low-Temperature Conditioning Induces Chilling Tolerance in “Hayward” Kiwifruit by Enhancing Antioxidant Enzyme Activity and Regulating Endogenous Hormones Levels. Journal of the Science of Food & Agriculture, 93, 3691-3699. https://doi.org/10.1002/jsfa.6195 |
[24] | Popov, V.N. and Naraikina, N.V. (2020) Change of Antioxidant Enzyme Activity during Low-Temperature Hardening of Nicotiana tabacum L. and Secale cereale L. Russian Journal of Plant Physiology, 67, 898-905.
https://doi.org/10.1134/S1021443720050118 |
[25] | Jorge, T.F., Rodrigues, J.A., Caldana, C., et al. (2016) Mass Spectrometry-Based Plant Metabolomics: Metabolite Responses to Abiotic Stress. Mass Spectrometry Reviews, 35, 620-649. https://doi.org/10.1002/mas.21449 |
[26] | Schrieber, K., Caceres, Y., Engelmann, A., et al. (2020) Elevational Differentiation in Metabolic Cold Stress Responses of an Endemic Mountain Tree. Environmental and Experimental Botany, 171, 221.
https://doi.org/10.1016/j.envexpbot.2019.103918 |
[27] | Shen, J.Z., Wang, Y., Chen, C.S., et al. (2015) Metabolite Profiling of Tea (Camellia sinensis L.) Leaves in Winter. Scientia Horticulturae, 192, 1-9. https://doi.org/10.1016/j.scienta.2015.05.022 |
[28] | Tursun, A.O. and Telci, I. (2020) The Effects of Carbon Dioxide and Temperature on Essential Oil Composition of Purple Basil (Ocimum basilicum L). Journal of Essential Oil Bearing Plants, 23, 255-265.
https://doi.org/10.1080/0972060X.2020.1741452 |
[29] | Bauerfeind, M.A., Winkelmann, T., Franken, P. and Druege, U. (2015) Transcriptome, Carbohydrate, and Phytohormone Analysis of Petunia hybrida Reveals a Complex Disturbance of Plant Functional Integrity under Mild Chilling Stress. Frontiers in Plant Science, 6, 583-588. https://doi.org/10.3389/fpls.2015.00583 |
[30] | Tang, N., Deng, W., Hu, N., Chen, N. and Li, Z.G. (2016) Metabolite and Transcriptomic Analysis Reveals Metabolic and Regulatory Features Associated with Powell Orange Pulp Deterioration during Room Temperature and Cold Storage. Postharvest Biology and Technology, 112, 75-86. https://doi.org/10.1016/j.postharvbio.2015.10.008 |
[31] | Raval, S.S., Mahatma, M.K., Chakraborty, K., et al. (2018) Metabolomics of Groundnut (Arachis hypogaea L.) Genotypes under Varying Temperature Regimes. Plant Growth Regulation, 84, 493-505.
https://doi.org/10.1007/s10725-017-0356-2 |
[32] | He, Y.L., Hu, C.Y., Wang, Y.H., et al. (2018) The Metabolic Survival Strategy of Marine Macroalga Ulva prolifera under Temperature Stress. Journal of Applied Phycology, 30, 3611-3621. https://doi.org/10.1007/s10811-018-1493-3 |
[33] | Ferreres, F., Pereira, D.M., Valent?o, P., et al. (2008) New Phenolic Compounds and Antioxidant Potential of Catharanthus roseus. Journal of Agricultural & Food Chemistry, 56, 9967. https://doi.org/10.1021/jf8022723 |
[34] | Dong, C.J., Liang, L., Ning, C., et al. (2015) Roles of Phenylalanine Ammonia-Lyase in Low Temperature Tolerance in Cucumber Seedlings. Chinese Journal of Applied Ecology, 26, 2041-2049. |
[35] | 孙梓健, 汤青林, 宋明, 任雪松. 红叶芥低温胁迫下苯丙氨酸解氨酶活性及其基因的克隆表达[J]. 西南大学学报(自然科学版), 2010, 32(2): 90-94. |
[36] | Hasegawa, H., Fukasawa-Akada, T., Okuno, T., et al. (2001) Anthocyanin Accumulation and Related Gene Expression in Japanese Parsley (Oenanthe stolonifera, DC.) Induced by Low Temperature. Journal of Plant Physiology, 158, 71-78.
https://doi.org/10.1078/0176-1617-00038 |
[37] | 宏涛, 陈纹, 李小伟, 苏雪, 孙坤. 低温胁迫下肋果沙棘试管苗黄酮类化合物合成关键酶的活性[J]. 北方园艺, 2015(10): 5-8. |
[38] | 谢小东. 烟草ABC转运蛋白家族鉴定及次生代谢物质转运的功能研究[D]: [博士学位论文]. 重庆: 重庆大学, 2014. |