全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器视觉的散热器钎焊缺陷检测系统研发
Research and Development of Radiator Brazing Defect detection System Based on Machine Vision

DOI: 10.12677/JISP.2021.103016, PP. 146-154

Keywords: 机器视觉,缺陷检测,钎焊
Machine Vision
, Defect Detection, Brazing

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决散热器钎焊缺陷在工业检测过程中效率低、差错率高的问题,本文设计了一种基于机器视觉的缺陷检测系统。针对钎焊环节产生的焊缝和阻塞这两种缺陷,通过设计的内外双光源照射模块分别对其打光得到各自的原始图像;其次采用灰度处理、滤波除燥等算法进行预处理;最后采用区域生长算子和设计的双阈值筛选算法分别得到了图像的焊缝和阻塞缺陷。实验表明,本系统检测效率比传统人工检测效率提高了6倍,准确率在97%以上。
In order to solve the problem of low efficiency and high error rate in the industrial detection of radiator brazing defects, a defect detection system based on machine vision is designed in this paper. Aiming at the two defects of welding seam and blocking produced in the brazing link, the original images are obtained by lighting them respectively through the designed internal and external double light source irradiation module. Secondly, the algorithm of gray processing, filtering and removing dryness is used for preprocessing. Finally, the regional growth operator and the designed double threshold screening algorithm were used to obtain the welding seam and blocking defects of the image respectively. The experiment shows that the system greatly improves the detection efficiency of brazing defects, and the accuracy rate is more than 97%.

References

[1]  李政, 李扬. 铝质型管汽车散热器[J]. 汽车零部件, 2018(10): 90-94.
[2]  王宇, 吴智恒, 邓志文, 刘进军, 童季刚, 莫爵贤. 基于机器视觉的金属零件表面缺陷检测系统[J]. 机械工程与自动化, 2018(4): 210-211, 214.
[3]  郭皓然. 高亮回转表面缺陷识别方法的研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2018.
[4]  王磊. 基于光度立体的金属板带表面缺陷三维检测方法[D]: [博士学位论文]. 北京: 北京科技大学, 2019.
[5]  周红明. 薄材焊缝自动化超声TOFD成像检测关键技术研究[D]: [博士学位论文]. 杭州: 浙江大学机械工程学院, 2014: 87-89.
[6]  郭俊磊. 基于机器视觉的焊件外观缺陷检测系统的设计[D]: [硕士学位论文]. 南京航空航天大学, 2014.
[7]  李琳娜. Visual C++编程实战宝典(配光盘) [M]. 北京: 清华大学出版社, 2014.
[8]  冈萨雷斯. 数字图像处理的MATLAB实现[M]. 北京: 清华大学出版社, 2013.
[9]  Bradski, G. and Adrian, K. 学习OPENCV (影印版) [M]. 南京: 东南大学出版社, 2009.
[10]  Ding, Z.Y., Yang, W.Q. and Xie, K.Q. (2010) Study on Casting Technique for the Stainless Steel Blade Castings. Foundry Technology, 31, 388-391.
[11]  Ahmed, M. (1995) Image Processing. McGraw-Hill, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133