|
基于半监督模糊聚类的图像压缩研究
|
Abstract:
针对主流图像压缩方法色彩深度冗余、无法针对特定场景加入标签以优化压缩质量等问题,本文提出了一种基于半监督模糊聚类(SFCM)的图像压缩方法,相比传统的图像压缩算法,该方法能通过引入模糊标签信息以提高特定应用场景下图像压缩的质量,即对特定区域进行标记以达到更好的压缩效果,从而使得图像压缩在更多不同应用场景保留更丰富的信息。本文实验选取传统的Lena图和COVID-19CT图像,实验结果显示此改进的图像压缩方法相比JPEG、K-Means等方法压缩得到的图像具有更好的信噪比。
To solve the problems of image compression methods such as color redundancy and the inability to add label for specific scenes to gain compression quality, this paper proposes an image compression method based on semi-supervised fuzzy clustering (SFCM). Compared with traditional image compression algorithms, this method can improve the quality of image compression in specific scenarios by introducing fuzzy label, marking specific areas to achieve better compression effects, so that image compression retains more details in specific scenarios. The experiments using Lena images and COVID-19 CT images show that this improved image compression method has a better SNR than traditional methods such as JPEG and K-Means.
[1] | 林小竹, 万建邦. 灰度图像的有损RLE压缩[J]. 石油化工高等学校学报, 2004, 17(3): 89-92. |
[2] | 黄福莹, 黄开志. 基于矢量量化和Huffman编码的图像压缩[C]//广西计算机学会2009年年会论文集. 广西: 广西计算机学会, 2009: 257-258. |
[3] | 饶兴. 基于Huffman编码的图像压缩解压研究[J]. 电脑知识与技术, 2011, 7(4): 887-889.
https://doi.org/10.3969/j.issn.1009-3044.2011.04.071 |
[4] | 蓝波, 林小竹, 籍俊伟. 一种改进的LZW算法在图像编码中的应用[J]. 计算机工程与科学, 2006, 28(6): 55-57. |
[5] | 丛爽, 蒲亚坤, 王军南. DCT图像压缩方法的改进及其应用[J]. 计算机工程与应用, 2010, 46(18): 160-163.
https://doi.org/10.3778/j.issn.1002-8331.2010.18.050 |
[6] | Chen, C.C. (1998) On the Selection of Image Compression Algorithms. International Conference on Pattern Recognition IEEE, Brisbane, 16-20 August 1998, 1-2. |
[7] | 李莲, 魏石磊. 一种基于VP8编码的Webp图片压缩格式研究[J]. 单片机与嵌入式系统应用, 2012, 12(3): 40-43.
https://doi.org/10.3969/j.issn.1009-623X.2012.03.016 |
[8] | 王成优, 侯正信. JPEG图像压缩编码及其MATLAB仿真实现[J]. 电子测量技术, 2007, 30(1): 135-137.
https://doi.org/10.3969/j.issn.1002-7300.2007.01.045 |
[9] | Lee, Y.L. (1998) Blocking Effect Reduction of JPEG Images by Signal Adaptive Filtering. IEEE Transactions on Image Processing, 7, 229-234. https://doi.org/10.1109/83.661000 |
[10] | Ginesu, G., Pintus, M. and Giusto, D.D. (2012) Objective Assessment of the WebP Image Coding Algorithm. Signal Processing: Image Communication, 27, 867-874. https://doi.org/10.1016/j.image.2012.01.011 |
[11] | 吴雪. 压缩质量相同的双重JPEG压缩检测算法研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2019. |
[12] | Karayiannis, N.B. (1995) Generalized Fuzzy k-Means Algorithms and Their Application in Image Compression. Proceedings of SPIE—The International Society for Optical Engineering, Orlando, 17-21 April 1995, 1-2.
https://doi.org/10.1117/12.211803 |
[13] | 殷俊. K-Means聚类算法的优化及在图片去重中的应用[D]: [硕士学位论文]. 武汉: 华中科技大学, 2016. |
[14] | 白福均, 高建瓴, 宋文慧, 等. 半监督模糊聚类算法的研究与改进[J]. 通信技术, 2018, 51(5): 71-75. |
[15] | Bezdek, J.C., Ehrlich, R. and Full, W. (1984) FCM: The Fuzzy C-Means Clustering Algorithm. Computers & Geosciences, 10, 191-203. https://doi.org/10.1016/0098-3004(84)90020-7 |
[16] | Hathaway, R.J., Davenport, J.W. and Bezdek, J.C. (1989) Relational Duals of the c-Means Clustering Algorithms. Pattern Recognition, 22, 205-212. https://doi.org/10.1016/0031-3203(89)90066-6 |
[17] | Steinley, D. (2011) K-Means Clustering: A Half-Century Synthesis. British Journal of Mathematical & Statal Psychology, 59, 1-34. https://doi.org/10.1348/000711005X48266 |
[18] | Bora, D.J. and Gupta, A.K. (2014) A Comparative Study between Fuzzy Clustering Algorithm and Hard Clustering Algorithm. International Journal of Emerging Trends & Technology in Computer Science, 10, 108-113.
https://doi.org/10.14445/22312803/IJCTT-V10P119 |