全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨纸基电化学传感器在生物分子检测上的研究进展
Research Progress on Graphite Paper-Based Electrochemical Sensor in Biomolecules Detection

DOI: 10.12677/AAC.2021.113009, PP. 83-90

Keywords: 石墨,纸,电化学传感器,生物分子检测
Graphite
, Paper, Electrochemical Sensor, Biomolecules Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

因为生物分子在人体内扮演着不可或缺的角色,例如多巴胺、葡萄糖、5-羟色胺,所以对这些生物分子的检测具有至关重要的意义。对生物分子进行检测有很多种方法,其中电化学检测方法因其独特的优点受到越来越多的关注。将石墨与纸组合起来构建的石墨纸基电化学分析系统是一种新型的电化学检测装置。由于其具有制作简单,成本低,灵敏度高等优点,可应用于许多领域。本文介绍了纸和石墨在传感器上的应用以及石墨纸基电化学传感器在生物分子检测上的研究进展。
Because biomolecules, such as dopamine, glucose, serotonin, play an indispensable role in the human body, so the detection of biomolecules is of great importance. There are many methods for the detection of biomolecules, among them, the electrochemical detection method has attracted more and more attention owing to its unique advantages. The graphene-based electrochemical analysis system, which is constructed by combining graphite with paper, is a novel electrochemical detection device. Since it has many strong points, for example easy to make, low cost, high sensitivity, it can be applied in many aspects. This paper introduces the application of paper and graphite in sensors and the research progress of graphite paper-based electrochemical sensors in biomolecules detection.

References

[1]  Suhito, I.R., Koo, K.M. and Kim, T.H. (2020) Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines, 9, 15.
https://doi.org/10.3390/biomedicines9010015
[2]  Nahar, L., Guo, M. and Sarker, S.D. (2020) Gas Chromatographic Analysis of Naturally Occurring Cannabinoids: A Review of Literature Published during the Past Decade. Phytochemical Analysis: PCA, 31, 135-146.
https://doi.org/10.1002/pca.2886
[3]  Zhu, Z., Lu, J.J. and Liu, S. (2012) Protein Separation by Capillary Gel Electrophoresis: A Review. Analytica chimica acta, 709, 21-31.
https://doi.org/10.1016/j.aca.2011.10.022
[4]  Qi, H. and Zhang, C. (2020) Electrogenerated Chemiluminescence Biosensing. Analytical Chemistry, 92, 524-534.
https://doi.org/10.1021/acs.analchem.9b03425
[5]  朱建中, 周衍. 电化学生物传感器的进展[J]. 专家论坛, 1997(4): 1-8.
[6]  邹绍芳, 门洪, 王平. 微型电化学传感器研究的最新进展[J]. 传感技术学报, 2004, 6(2): 336-341.
[7]  Ashley, K. (2003) Developments in Electrochemical Sensors for Occupational and Environmental Health Applications. Journal of Hazardous Materials, 102, 1-12.
https://doi.org/10.1016/S0304-3894(03)00198-5
[8]  Guth, U., Vonau, W. and Zosel, J. (2009) Recent Developments in Electrochemical Sensor Application and Technology—A Review. Measurement Science & Technology, 20, 1-14.
https://doi.org/10.1088/0957-0233/20/4/042002
[9]  Miao, P. and Tang, Y.G. (2020) Cascade Toehold-mediated Strand Displacement Reaction for Ultrasensitive Detection of Exosomal MicroRNA. CCS Chemistry, 2, 2331-2339.
https://doi.org/10.31635/ccschem.020.202000458
[10]  Yang, H.M., Kong, Q.K. and Wang, S. (2014) Hand-Drawn & Written Pen-On-Paper Electrochemiluminescence Immunodevice Powered by Rechargeable Battery for Low-Cost Point-of-Care Testing. Biosensors and Bioelectronics, 61, 21-27.
https://doi.org/10.1016/j.bios.2014.04.051
[11]  Guo, X.L., Wang, Q. and Li, J.L. (2015) A Mini-Electrochemical System Integrated Micropipet Tip and Pencil Graphite Electrode for Detection of Anticancer Drug Sensitivity in Vitro. Biosensors and Bioelectronics, 64, 594-596.
https://doi.org/10.1016/j.bios.2014.09.086
[12]  He, J.G. and Hu, L. (2014) Flexible Lead Sulfide Colloidal Quantum Dot Photodetector Using Pencil Graphite Electrodes on Paper Substrates. Journal of Alloys and Compounds, 596, 73-78.
https://doi.org/10.1016/j.jallcom.2014.01.194
[13]  Mandal, P., Deya, R. and Chakraborty, S. (2012) Electrokinetics with “Paper-and-Pencil” Devices. Lab on a Chip, 12, 4026-4028.
https://doi.org/10.1039/c2lc40681k
[14]  Wang, Y.G. and Zhou, H.S. (2011) To Draw an Air Electrode of Li-Air Battery by Pencil. Energy & Environmental Science, 4, 1704-1707.
https://doi.org/10.1039/c0ee00759e
[15]  Akbari Hasanjani, H.R. and Zarei, K. (2019) An Electrochemical Sensor for Attomolar Determination of Mercury(II) Using DNA/Poly-L-Methionine-Gold Nanoparticles/Pencil Graphite Electrode. Biosensors & Bioelectronics, 128, 1-8.
https://doi.org/10.1016/j.bios.2018.12.039
[16]  Ng, K.L. and Khor, S.M. (2017) Graphite-Based Nanocomposite Electrochemical Sensor for Multiplex Detection of Adenine, Guanine, Thymine, and Cytosine: A Biomedical Prospect for Studying DNA Damage. Analytical Chemistry, 89, 10004-10012.
https://doi.org/10.1021/acs.analchem.7b02432
[17]  Andres, W.M., Scott, T.P., Manish, J.B., et al. (2007) Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Communications, 46, 1318-1320.
https://doi.org/10.1002/anie.200603817
[18]  Thom, N.K., Lewis, G.G., DiTucci, M.J., et al. (2013) Two General Designs for Fluidic Batteries in Paper-Based Microfluidic Devices That Provide Predictable and Tunable Sources of Power for On-Chip Assays. RSC Advances, 3, 6888-6895.
https://doi.org/10.1039/c3ra40701b
[19]  Zhao, C., Thuo, M.M. and Liu, X. (2013) A Microfluidic Paper-Based Electrochemical Biosensor Array for Multiplexed Detection of Metabolic Biomarkers. Science and Technology of Advanced Materials, 14, Article ID: 054402.
https://doi.org/10.1088/1468-6996/14/5/054402
[20]  Wang, P., Wang, M.Y., Zhou, F.Y., et al. (2017) Development of a Paper-Based, Inexpensive, and Disposable Electrochemical Sensing Platform for Nitrite Detection. Electrochemistry Communications, 81, 74-78.
https://doi.org/10.1016/j.elecom.2017.06.006
[21]  Gutiérrez-Capitán, M., Baldi, A. and Fernández-Sánchez, C. (2020). Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors, 20, 967.
https://doi.org/10.3390/s20040967
[22]  Santhiago, M., Strauss, M., Pereira, M.P., et al. (2017) Direct Drawing Method of Graphite onto Paper for High-Performance Flexible Electrochemical Sensors. ACS Applied Materials & Interfaces, 9, 11959-11966.
https://doi.org/10.1021/acsami.6b15646
[23]  Ren, T.L., Tian, H., Xie, D., et al. (2012) Flexible Graphite-on-Paper Piezoresistive. Sensors, 12, 6685-6694.
https://doi.org/10.3390/s120506685
[24]  Santhiago, M., Henry, C.S. and Kubota, L.T. (2014) Low Cost, Simple Three Dimensional Electrochemical Paper-Based Analytical Device for Determination of P-Nitrophenol. Electrochimica Acta, 130, 771-777.
https://doi.org/10.1016/j.electacta.2014.03.109
[25]  Li, W.B., Qian, D.P., Li, Y.B., Bao, N., Gu, H.Y. and Yu, C.M. (2016) Fully-Drawn Pencil-On-Paper Sensors for Electroanalysis of Dopamine. Journal of Electroanalytical Chemistry, 769, 72-79.
https://doi.org/10.1016/j.jelechem.2016.03.027
[26]  Nikos, G. and Tsierkezos, U.R. (2012) Oxidation of Dopamine on Multi-Walled Carbon Nanotubes. Journal of Solid State Electrochemistry, 16, 2217-2226.
https://doi.org/10.1007/s10008-012-1647-1
[27]  Kasetty, R., Matti, M.R., Pamula, R., et al. (2013) An Electrochemical Sensor Based on Poly Film Coated Electrode for the Determination of Dopamine and Simultaneous Separation in the Presence of Uric Acid and Ascorbic Acid: A Voltammetric Method. Colloids and Surfaces B: Biointerfaces, 106, 145-150.
https://doi.org/10.1016/j.colsurfb.2013.01.025
[28]  Zhou, Y.Z., Zhang, H.Y., Zhang, J., et al. (2013) Electrochemically Sensitive Determination of Dopamine and Uric Acid Based on Poly (BeryllonⅡ)/Nanowires-Lapo4 Modified Carbon Paste Electrode. Sensors and Actuators B, 182, 610-617.
https://doi.org/10.1016/j.snb.2013.03.057
[29]  Contreras, F., Lares, M. and Magaldi, L. (2010) Influence of Dopamine and Metoclopramide on Hemodynamic Parameters in Patients with Type 2 Diabetes Mellitus. Revista Latinoamericana de Hipertension, 5, 43-52.
[30]  ?zcan, A., ?lkba?, S. and At?l?r?zcan, A. (2017) Development of a Disposable and Low-Cost Electrochemical Sensor for Dopamine Detection Based on Poly(Pyrrole-3-Carboxylic Acid)-Modified Electrochemically Over-Oxidized Pencil Graphite Electrode. Talanta, 165, 489-495.
https://doi.org/10.1016/j.talanta.2017.01.007
[31]  Nomura, Y. and Segawa, M. (2003) Neurology of Tourette’s Syndrome (TS) TS as a Developmental Dopamine Disorder: A Hypothesis. Brain & Development, 25, 37-42.
https://doi.org/10.1016/S0387-7604(03)90007-6
[32]  Yang, P.H., Wang, L.S. and Wu, Q. (2014) A Method for Determination of Glucose by an Amperometric Bienzyme Biosensor Based on Silver Nanocubes Modified Au Electrode. Sensors and Actuators B, 194, 71-78.
https://doi.org/10.1016/j.snb.2013.12.074
[33]  Soni, A. and Jha, S.K. (2014) A Paper Strip Based Non-Invasive Glucose Biosensor for Salivary Analysis. Biosensors & Bioelectronics, 67, 763-768.
https://doi.org/10.1016/j.bios.2014.09.042
[34]  Gutierrez, E.A., Mundhada, H. and Meier, T. (2013) Reengineered Glucose Oxidase for Amperometric Glucose Determination in Diabetes Analytics. Biosensors and Bioelectronics, 50C, 84-90.
https://doi.org/10.1016/j.bios.2013.06.029
[35]  Mohammadifar, M., Tahernia, M. and Choi, S. (2019) An Equipment-Free, Paper-Based Electrochemical Sensor for Visual Monitoring of Glucose Levels in Urine. SLAS Technology, 24, 499-505.
https://doi.org/10.1177/2472630319846876
[36]  Kong, F.Y., Gu, S.X., Li, W.W., et al. (2014) A Paper Disk Equipped with Graphene/Polyaniline/Au Nanoparticles/Glucose Oxidase Biocomposite Modified Screen-Printed Electrode: Toward Whole Blood Glucose Determination. Biosensors & bioelectronics, 56, 77-82.
https://doi.org/10.1016/j.bios.2013.12.067
[37]  Chaiyo, S., Mehmeti, E., Siangproh, W., et al. (2018) Non-Enzymatic Electrochemical Detection of Glucose with a Disposable Paper-Based Sensor Using a Cobalt Phthalocyanine-Ionic Liquid-Graphene Composite. Biosensors & bioelectronics, 102, 113-120.
https://doi.org/10.1016/j.bios.2017.11.015
[38]  Matsumoto, A., Sato, N., Kataoka, K., et al. (2009) Noninvasive Sialic Acid Detection at Cell Membrane by Using Phenylboronic Acid Modified Self-Assembled Monolayer Gold Electrode. Journal of the American Chemistry Society, 131, 12022-12023.
https://doi.org/10.1021/ja902964m
[39]  Marzouk, S.A.M., Ashraf, S.S. and Tayyari, K. A.A. (2016) Prototype Amperometric Biosensor for Sialic Acid Determination. Analytical Chemistry, 4, 1668-1674.
https://doi.org/10.1021/ac061886d
[40]  Zhou, Y., Huangfu, H., Yang, J., et al. (2019) Potentiometric Analysis of Sialic Acid with a Flexible Carbon Cloth Based on Boronate Affinity and Molecularly Imprinted Polymers. The Analyst, 144, 6432-6437.
https://doi.org/10.1039/C9AN01600G
[41]  Perry, M., Li, Q. and Kennedy, R.T. (2009) Review of Recent Advances in Analytical Techniques for the Determination of Neurotransmitters. Analytica Chimica Acta, 653, 1-22.
https://doi.org/10.1016/j.aca.2009.08.038
[42]  ]Madhurantakam, S., Karnam, J.B., Brabazon, D., et al. (2020) “Nano”: An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chemical Neuroscience, 11, 4024-4047.
https://doi.org/10.1021/acschemneuro.0c00355
[43]  Amatatongchai, M., Sitanurak, J., Sroysee, W., et al. (2019) Highly Sensitive and selective Electrochemical Paper-Based Device Using a Graphite Screen-Printed Electrode Modified with Molecularly Imprinted Polymers Coated Fe3O4@Au@Sio2 for Serotonin Determination. Analytica Chimica Acta, 1077, 255-265.
https://doi.org/10.1016/j.aca.2019.05.047
[44]  Orzari, L.O., Cristina de Freitas, R., Aparecida de Araujo Andreotti, I., et al. (2019) A Novel Disposable Self-Adhesive Inked Paper Device for Electrochemical Sensing of Dopamine and Serotonin Neurotransmitters and Biosensing of Glucose. Biosensors & Bioelectronics, 138, Article ID: 111310.
https://doi.org/10.1016/j.bios.2019.05.015
[45]  Minta, D., Moyseowicz, A., Gryglewicz, S., et al. (2020) A Promising Electrochemical Platform for Dopamine and Uric Acid Detection Based on a Polyaniline/Iron Oxide-Tin Oxide/Reduced Graphene Oxide Ternary Composite. Molecules, 25, 5869.
https://doi.org/10.3390/molecules25245869
[46]  Yang, Y., Li, M. and Zhu, Z. (2019) A Novel Electrochemical Sensor Based on Carbon Nanotubes Array for Selective Detection of Dopamine or Uric Acid. Talanta, 201, 295-300.
https://doi.org/10.1016/j.talanta.2019.03.096
[47]  Huang, X., Shi, W.S., Li, J., et al. (2020) Determination of Salivary Uric Acid by Using Poly(3,4-Ethylenedioxythipohene) and Graphene Oxide in a Disposable Paper-Based Analytical Device. Analytica Chimica Acta, 1103, 75-83.
https://doi.org/10.1016/j.aca.2019.12.057
[48]  Cai, W.H., Lai, T. and Du, H.J. (2014) Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Based on an Exfoliated Graphite Paper Electrode: A High Performance Flexible Sensor. Sensors and Actuators B, 193, 492-500.
https://doi.org/10.1016/j.snb.2013.12.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133