全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深度学习在果蔬识别领域的应用
Application of Deep Learning in Fruit and Vegetable Recognition

DOI: 10.12677/SEA.2021.103037, PP. 329-336

Keywords: 食品健康,深度学习,迁移学习,图像识别,识别模型
Food Health
, Deep Learning, Transfer Learning, Image Recognition, Recognition Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前果蔬存储时间与安全问题,希望通过研究实现新鲜果蔬识别与系统时间记录,本文运用了Python语言、Flask框架、深度学习、爬虫、Xception算法等相关技术对系统的总体架构以及功能模块进行设计,实现了食物识别、腐败提醒等主要功能。通过实际测试后,系统运行稳定,能较好地减少因食用腐败食品而导致疾病的问题。
Aiming at the current problems of fruit and vegetable storage time and safety, we hope to achieve fresh fruit and vegetable identification and system time recording through research. The paper uses Python language, Flask framework, deep learning, crawlers, Xception algorithm and other related technologies to design the overall architecture of the system as well as functional modules, and realize the main functions such as food identification and spoilage reminder. After the actual test, the system runs stably and can better reduce the problem of diseases caused by eating spoiled food.

References

[1]  Graf, G.L., Rehkugler, G.E., Millier, W.F., et al. (1981) Automatic Detection of Surface Flaws on Apples Using Digital Image Processing. Microfiche Collection.
[2]  Bolle, R.M., Connell, J.H., Haas, N., Mohan, R. and Taubin, G. (1996) VeggieVision: A Produce Recognition System. Proceedings of Third IEEE Workshop on Applications of Computer Vision, WACV’96, 244-251.
[3]  Faria, F.A., Dos Santos, J.A., Rocha, A., et al. (2012) Automatic Classifier Fusion for Produce Recognition. 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, 252-259.
https://doi.org/10.1109/SIBGRAPI.2012.42
[4]  陶华伟, 赵力, 奚吉, 虞玲, 王彤. 基于颜色及纹理特征的果蔬种类识别方法[J]. 农业工程学报, 2014, 30(16): 305-311.
[5]  庄路路. 基于改进SURF算法和神经网络的水果识别技术研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2016.
[6]  周宇杰. 深度学习在图像识别领域的应用现状与优势[J]. 中国安防, 2016(7): 75-78.
[7]  曾维亮, 林志贤, 陈永洒. 基于卷积神经网络的智能冰箱果蔬图像识别的研究[J]. 微型机与应用, 2017, 36(8): 56-59.
[8]  王露露. 基于深度学习方法求解高维偏微分方程[D]: [硕士学位论文]. 武汉: 武汉大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133