全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冀北四岔口盆地早白垩世大型恐龙化石赋存地层的有机碳同位素记录及其古环境意义
The δ13CTOC Record of Early Cretaceous Strata Bearing Giant Dinosaurs in the Sichakou Basin, North Hebei Province, and Its Palaeoenvironmental Implication

DOI: 10.12677/AG.2021.116069, PP. 747-755

Keywords: 四岔口盆地,花吉营组,有机碳同位素组成,古环境,热河生物群
Sichakou Basin
, Huajiying Formation, Organic Carbon Isotopic Composition, Palaeoenvironment, Jehol Biota

Full-Text   Cite this paper   Add to My Lib

Abstract:

依据化石产出地层沉积物的古环境重建可为相关古生物的研究提供较详细的背景支撑,但目前有关早期热河生物群的上述研究较少。河北省丰宁县的四岔口盆地早白垩世花吉营组地层埋藏有大型恐龙化石,本文对其中一处化石赋存层位的沉积物进行了有机碳含量(TOC)和总有机碳同位素组成(δ13CTOC)分析,结果表明沉积物的TOC和δ13CTOC值显著负相关,且δ13CTOC值整体显著偏轻。这表明当时冀北地区植物的δ13CTOC特征可能是受火山活动影响,即火山喷发释放CO2导致大气CO2的δ13C值变轻且CO2浓度增加,从而使植物的δ13CTOC值整体变轻;且随着植物生产力的增大,δ13CTOC值相对偏轻的陆生植物和/或挺水植物对湖泊沉积有机质的相对贡献量增加,δ13CTOC值相对偏重的沉水植物的相对贡献量减少。
Palaeoenvironmental reconstruction based on the fossil-bearing sediments could provide the basic habitat support in acquiring the knowledge about the prehistoric remains. The similar studies, however, are few conducted in researches to the early Jehol Biota by now. In this preliminary study, the fossil-bearing sediments were collected first in northern Hebei, where lots of significant early birds and a well-preserved giant dinosaur were found, and the total organic carbon (TOC) and total organic carbon isotope composition (δ13CTOC) were analyzed later. The results show TOC and δ13CTOC values are significantly negatively correlated, and the δ13CTOC values are obviously lower. The volcanic activity during the Hauterivian period in north Hebei may account for the reducing of the sediment δ13CTOC values, for the large amount of CO2 erupted into the air would lighten the δ13C value in atmospheric CO2 which its concentration was increased at the same time, further leading to the overall reducing of δ13CTOC value in the contemporaneous plants. Besides, with the increase of plants productivity, the terrestrial and/or emergent plants, which the relative δ13CTOC values are usually lower, added more relative contribution to the limnetic organic materials, while those of submerged plants, which the relative δ13CTOC values are usually higher, added less.

References

[1]  Chang, M., Chen, P.J., Wang, Y., Wang, Y.Q. and Miao, D. (2003) The Jehol Biota: The Emergence of Feathered Dinosaurs, Beaked Birds, and Flowering Plants. Shanghai Scientific & Technical Publishers, Shanghai, 1-208.
[2]  Wang, X.L. and Zhou, Z.H. (2008) Mesozoic Pompeii. In: Chang, M.M., Ed., The Jehol Fossils, Shanghai Scientific & Technical Publishers, Shanghai, 19-35.
https://doi.org/10.1016/B978-012374173-8.50003-X
[3]  Zhou, Z.H., Barrett, P.M. and Hilton, J. (2003) An Exceptionally Preserved Lower Cretaceous Ecosystem. Nature, 421, 807-814.
https://doi.org/10.1038/nature01420
[4]  Jiang, B.Y., Fürsichm, F.T., Sha, J.G., Wang, B. and Niu, Y.Z. (2011) Early Cretaceous Volcanism and Its Impact on Fossil Preservation in Western Liaoning, NE China. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 255-269.
https://doi.org/10.1016/j.palaeo.2011.01.016
[5]  Pan, Y.H., Sha, G.J. and Yao, X.G. (2012) Taphonomy of Early Cretaceous Freshwater Bivalve Concentrations from the Sihetun Area, Western Liaoning, NE China. Cretaceous Research, 34, 94-106.
https://doi.org/10.1016/j.cretres.2011.10.007
[6]  Carvalho, I.S., Novas, F.E., Agnolín, F.L., Isasi, M.P., Freitas, F.I. and Andrade, J.A. (2015) A Mesozoic Bird from Gondwana Preserving Feathers. Nature Communications, 6, Article No. 7141.
https://doi.org/10.1038/ncomms8141
[7]  Haq, B.U., Hardenbol, J. and Vail, P.R. (1987) Chronology of Fluctuating Sea Levels since the Triassic. Science, 235, 1156-1167.
https://doi.org/10.1126/science.235.4793.1156
[8]  Clarke, L.J. and Jenkyns, H.C. (1999) New Oxygen Isotope Evidence for Long-Term Cretaceous Climatic Change in the Southern Hemisphere. Geology, 27, 699-702.
https://doi.org/10.1130/0091-7613(1999)027<0699:NOIEFL>2.3.CO;2
[9]  Huber, B.T., Norris, R.D. and Macleod, K.G. (2002) Deep-Sea Paleotemperature Record of Extreme Warmth during the Cretaceous. Geology, 30, 123-126.
https://doi.org/10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2
[10]  Wang, G., Cheng, R., Wang, P., Gao, Y., Wang, C., Ren, Y. and Huang, Q. (2015) High Resolution Continuous Sedimentary Records of Upper Cretaceous Obtained from the Continental Drilling (Sk-1) Borehole in Songliao Basin: Sifangtai and Mingshui Formations. Geoscience Frontiers, 6, 895-912.
https://doi.org/10.1016/j.gsf.2015.02.003
[11]  Schlanger, S.O. and Jenkyns, H.C. (1976) Cretaceous Oceanic Anoxic Vents: Causes and Consequences. GeologieEnMijnbouw, 55, 179-184.
[12]  Cronin, M., Tauxe, L., Constable, C., Selkin, P. and Pick, T. (2001) Noise in the Quiet Zone. Earth and Planetary Science Letters, 190, 13-30.
https://doi.org/10.1016/S0012-821X(01)00354-5
[13]  Leckie, R.M., Bralower, T.J. and Cashman, R. (2002) Oceanic Anoxic Events and Plankton Evolution: Biotic Response to Tectonic Forcing during the Mid-Cretaceous. Paleoceanography, 17, 13-1-13-29.
https://doi.org/10.1029/2001PA000623
[14]  Weissert, H. and Erba, E. (2004) Volcanism, CO2 and Paleoclimate: A Late Jurassic-Early Cretaceous Carbon and Oxygen Isotope Record. Journal of the Geological Society, London, 161, 03087.
https://doi.org/10.1144/0016-764903-087
[15]  Hu, X.M., Jansa, L., Wang, C.S., Sarti, M., Bak, K., Wagreich, M., Michalik, J. and Sotákg, K. (2005) Upper Cretaceous Oceanic Red Beds (CORBs) in the Tethys: Occurrence, Lithofacies, Age, and Environments. Cretaceous Research, 26, 3-20.
https://doi.org/10.1016/j.cretres.2004.11.011
[16]  Wang, C.S., Hu, X.M., Sarti, M., Robert, W.S. and Li, X.H. (2005) Upper Cretaceous Oceanic Red Beds in Southern Tibet: A Major Change from Anoxic to Oxic, Deep-Sea Environments. Cretaceous Research, 26, 21-32.
https://doi.org/10.1016/j.cretres.2004.11.010
[17]  Keller, G. (2008) Cretaceous Climate, Volcanism, Impacts, and Biotic Effects. Cretaceous Research, 29, 754-771.
https://doi.org/10.1016/j.cretres.2008.05.030
[18]  Huber, B.T., Hodell, D.A. and Hamilton, C.P. (1995) Mid-dle-Late Cretaceous Climate of the Southern High Latitudes: Stable Isotopic Evidence for Minimal Equator-to-Pole Thermal Gradients. Geological Society of America Bulletin, 107, 1164-1191.
https://doi.org/10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2
[19]  Li, L. and Keller, G. (1998) Abrupt Deep-Sea Warming at the End of the Cretaceous. Geology, 26, 995-998.
https://doi.org/10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2
[20]  Li, L. and Keller, G. (1998) Maastrichtian Climate, Productivity and Faunal Turnovers in Planktic Foraminifera in South Atlantic DSDP Sites 525A and 21. Marine Micropaleontology, 33, 55-86.
https://doi.org/10.1016/S0377-8398(97)00027-3
[21]  范庆超, 徐兆凯. 白垩纪大洋缺氧事件研究进展[J]. 海洋科学, 2020, 44(2): 138-145.
[22]  Yang, S.H., He, H.Y., Jin, F., Zhang, F.C., Wu, Y.B., Yu, Z.Q., Li, Q.L., Wang, M., O’Connor, J.K., Deng, C.L., Zhu, R.X. and Zhou, Z.H. (2020) The Appearance and Duration of the Jehol Biota: Constraint from SIMS U-Pb Zircon Dating for the Huajiying Formation in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 117, 14299-14305.
https://doi.org/10.1073/pnas.1918272117
[23]  丁秋红, 金成洙, 张立东, 郭胜哲, 张长捷, 彭艳东, 贾斌, 陈树旺, 刑德, 郑月娟. 四合屯含鸟化石层地球化学异常及沉积环境[J]. 地质与资源, 2003, 12(3): 139-145.
[24]  Wang, Y.Q., Olsen, P.E., Sha, J.G., Yao, X.G., Liao, H.Y., Pan, Y.H., Kinney, S., Zhang, X.L. and Rao, X. (2016) Stratigraphy, Correlation, Depositional Environments, and Cyclicity of the Early Cretaceous Yixian and Jurassic-Cretaceous Tuchengzi formations in the Sihetun Area (NE China) Based on Three Continuous Cores. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 110-133.
https://doi.org/10.1016/j.palaeo.2016.06.043
[25]  Zhang, X.L., Zhang, G.J. and Sha, J.G (2016) Lacustrine Sedimentary Record of Early Aptian Carbon Cycle Perturbation in Western Liaoning, China. Cretaceous Research, 62, 122-129.
https://doi.org/10.1016/j.cretres.2015.10.001
[26]  Zhang, F.C. and Zhou, Z.H. (2000) A Primitive Enantiornithine Bird and the Origin of Feathers. Science, 290, 1955-1959.
https://doi.org/10.1126/science.290.5498.1955
[27]  Jin, F., Zhang, F.C., Li, Z.H., Zhang, J.Y. and Zhou, Z.H. (2008) On the Horizon of Protopteryx and the Early Vertebrate Fossil Assemblages of the Jehol Biota. Chinese Science Bulletin, 53, 2820-2827.
https://doi.org/10.1007/s11434-008-0209-5
[28]  Wang, M., Zheng, X.T., O’Connor, J.K., Lloyd, G.T., Wang, X.L., Wang, Y., Zhang, X.M. and Zhou, Z.H. (2015) The Oldest Record of Ornithuromorpha from the Early Creta-ceous of China. Nature Communications, 6, Article No. 6987.
https://doi.org/10.1038/ncomms7987
[29]  Zhang, F.C., Zhou, Z.H. and Benton, M.J. (2008) A Primitive Confuciusornithid Bird from China and Its Implications for Early Avian Flight. Science in China (Series D: Earth Science), 51, 625-639.
https://doi.org/10.1007/s11430-008-0050-3
[30]  Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W. and Liu, M. (2006) Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246, 336-352.
https://doi.org/10.1016/j.epsl.2006.04.029
[31]  柳永清, 李佩贤, 田树刚. 冀北滦平晚中生代火山碎屑(熔)岩中锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石矿物学杂志, 2003, 22(3): 237-244.
[32]  Meyers, P.A. (2009) Organic Geochemical Proxies. In: Gornitz, V., Ed., Encyclopedia of Paleoclimatology and Ancient Environments, Springer, Dordrecht, 659-663.
https://doi.org/10.1007/978-1-4020-4411-3_160
[33]  Suan, G., van de Schootbrugge, B., Adatte, T., Fiebig, J. and Oschmann, W. (2015) Calibrating the Magnitude of the Toarcian Carbon Cycle Perturbation. Paleoceanography, 30, 495-509.
https://doi.org/10.1002/2014PA002758
[34]  胡修棉, 王成善, 李祥辉. 大洋缺氧时间的碳稳定同位素响应[J]. 成都理工大学学报(自然科学版), 2001, 28(1): 1-6.
[35]  Meyers, P.A. (1994) Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114, 289-302.
https://doi.org/10.1016/0009-2541(94)90059-0
[36]  吴福莉, 赵艳, 方小敏, 孟庆泉, 杨一博. 兰州盆地44-15 Ma地层的有机碳同位素记录[J]. 第四纪研究, 2015, 35(4): 847-855.
[37]  Meyers, P.A. (1997) Organic Geochemical Proxies of Paleoceanographic, Apleolimnologic, and Paleoclimatic Process. Organic Geochemistry, 27, 213-250.
https://doi.org/10.1016/S0146-6380(97)00049-1
[38]  Dana, S. and Deevey, E.S. (1960) Carbon-13 in Lake Waters, and Its Possible Bearing on Paleolimnology. American Journal of Science, 258, 253-272.
[39]  Retallack, G.J.A. (2001) A 300-Million-Year Record of Atmospheric Carbon Dioxide from Fossil Plant Cuticles. Nature, 411, 287-290.
https://doi.org/10.1038/35077041
[40]  Feng, X. and Epstein, S. (1995) Carbon Isotopes of Trees from Arid Environments and Implications for Reconstructing Atmospheric CO2 Concentration. Geochimica et Cosmochimica Acta, 59, 2599-2608.
https://doi.org/10.1016/0016-7037(95)00152-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133