全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2021 

MMC型直流融冰装置小型化散热结构设计
Design of Miniaturized Heat Dissipation Structure of MMC DC Ice-Melting Device

DOI: 10.12677/SG.2021.113025, PP. 272-278

Keywords: 直流融冰,小型化,散热结构,MMC
DC Ice-Melting
, Miniaturization, Heat Dissipation Structure, MMC

Full-Text   Cite this paper   Add to My Lib

Abstract:

直流融冰技术因其效率高、覆盖面广等优点已成为我国电网抵御大规模冰冻灾害使用最为频繁和有效的手段。随着技术的进步,直流融冰装置也从传统的晶闸管融冰装置向功能复用的MMC直流融冰装置方向发展。但与此同时由于已有变电站本身剩余空间的局限和MMC直流融冰装置占地较大,存在制约装置的现场安装布置。为此本文围绕MMC型直流融冰装置小型化开展研究工作。论文首先从功率模块结构优化设计入手,基于ANSYS Icepak平台对所选型的散热器进行热分析,得到了功率模块的结构温度场分布并实现了模块相比于传统结构的减小30%的设计。在此基础上,针对融冰装置经常移动需求,提出了采用强迫风冷作为设备散热方式。此外,结合装置日常作为无功补偿长期运行的特征,提出了下进风和侧进风两种方式,为工程实际应用提供了依据。
DC ice-melting technology has become the most frequently used and effective means in power grid to resist large-scale freezing disasters due to its high efficiency and wide coverage. With the advancement of technology, the DC ice melting device has also developed from the traditional thyristor ice-melting device to the MMC DC ice-melting device with multiple functions. At the same time, due to the limitation of the remaining space of the existing substation itself and the large area of the MMC DC ice-melting device, there are restrictions on the installation and arrangement of the device on-site. For this reason, this article focuses on the miniaturization of MMC DC ice-melting device. The structural optimization design of the power module was first carried out in the paper. Based on the ANSYS Icepak platform, the selected type of heat sink was analyzed thermally. The temperature field of the power module was obtained and the structure was designed to be less than 30% compared to the traditional design. On this basis, in response to the frequent movement of the ice-melting device, forced air cooling is proposed as a heat dissipation method for the equipment. In addition, combined with the long-term operation characteristics of the device as a reactive power compensation device, two methods of downward air intake and side air intake are proposed, which provide a basis for practical engineering applications.

References

[1]  殷蔚翎, 黄良. 基于倾角传感器及不同杆塔类型的输电线路覆冰监测研究[J]. 电力大数据, 2020, 23(1): 20-26.
[2]  蒋兴良, 张志劲, 胡琴, 等. 再次面临电网冰雪灾害的反思与思考[J]. 高电压技术, 2018, 44(2): 463-469.
[3]  周恺, 张睿哲, 蔡瀛淼, 等. 基于分布式光纤的架空输电线路覆冰监测技术及应用[J]. 水电能源科学, 2020, 38(7): 177-180.
[4]  蒋明, 赵汉棣, 马小强. 高压输电线路覆冰及防冰、除冰技术综述[J]. 电力安全技术, 2020, 22(4): 26-32.
[5]  念路鹏. 架空输电线路覆冰增长模型关键参数的研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2020.
[6]  陆佳政, 张允. 基于12脉动整流技术的500 kV输电线路融冰装置实现[J]. 高电压技术, 2012(11): 3041-3047.
[7]  许逵, 马晓红, 饶崇林, 等. 全桥MMC型和晶闸管整流型直流融冰技术的研究与比较[J]. 南方电网技术, 2020, 14(4): 45-53.
[8]  宫衍圣, 王强, 黄文勋, 等. 接触网机械除冰技术研究[J]. 高速铁路技术, 2018, 9(1): 43-47.
[9]  马晓红, 赵立进, 李巍, 等. 直流融冰技术在贵州电网的应用[J]. 南方电网技术, 2009, 3(5): 107-110.
[10]  何鹏, 蔡革胜, 魏希辉, 等. 架空输电线路机械除冰方法及装置简述[J]. 贵州电力技术, 2008(4): 5-8.
[11]  梅红明, 刘建政. 新型模块化多电平直流融冰装置[J]. 电力系统自动化, 2013, 37(16): 96-102.
[12]  李泓志, 贺之渊, 杨杰, 等. 模块化多电平换流器操作过电压分析[J]. 高电压技术, 2017, 43(4): 94-101.
[13]  周国梁, 谢竹君, 向往, 等. 适用于多工况优化设计与重复仿真的MMC快速仿真平台[J]. 中国电力, 2019, 52(2): 90-98.
[14]  赵庆明. 基于混合子模块的新型模块化多电平直流融冰装置[J]. 南方电网技术, 2015, 9(11): 36-41.
[15]  刘国伟, 赵宇明, 袁志昌, 等. 深圳柔性直流配电示范工程技术方案研究[J]. 南方电网技术, 2016, 10(4): 1-7.
[16]  Hu, P., Liang, Y., Du, Y., et al. (2018) Development and Testing of a 10 kV 1.5 kA Mobile DC De-Icer Based on Modular Multilevel Converter with STATCOM Function. Journal of Power Electronics, 18, 456-466.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133