全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向制造企业全生命周期的数字孪生研究综述
A Review of Digital Twinning for the Whole Life Cycle of Manufacturing Enterprises

DOI: 10.12677/SEA.2021.103041, PP. 365-371

Keywords: 数字孪生,全生命周期,智能制造,虚拟现实,大数据
Digital Twinning
, Full Lifecycle, Intelligent Manufacturing, Virtual Reality, Big Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着“工业4.0”“智能制造”等概念规划的提出以及大数据、人工智能等高新技术的普及,工业领域制造行业呈现高度信息化、自动化趋势,生产过程和生产模式逐步智能化、一体化。传统生产模式下通过实际生产过程获得的数据进行指标测量并制定决策的方式已经不再能够满足当下制造企业对多单元复杂生产系统的管控需要,因此,面向制造企业全生命周期的数字孪生成为制造企业转型升级的新突破点、成为智能制造领域的新兴研究热点。本文通过与传统仿真技术进行横向对比,系统分析基于大数据、人工智能、虚拟现实等的数字孪生技术内涵以及其与传统仿真技术存在的关联和异同,重点分析面向制造企业全生命周期、针对制造企业多单元复杂生产系统智能运行和维护的数字孪生的优势和具体应用方式,阐述数字孪生对实现制造企业全生命周期管理的可行性,并展望其未来的发展趋势和方向。
With the introduction of concept planning such as Industry 4.0 and Intelligent Manufacturing, at the same time, the popularization of high and new technologies such as big data and artificial intelligence, the manufacturing industry in the industrial field presents a high degree of informatization and automation trend; the production process and production mode are gradually intelligent and integrated. Under the traditional production mode, the index measurement and decision making method based on the data obtained from the actual production process can no longer meet the current manufacturing enterprises’ control needs for the multi-unit complex production system; therefore, digital twinning oriented to the whole life cycle of manufacturing enterprises has become a new breakthrough point for the transformation and upgrading of manufacturing enterprises and an emerging research hotspot in the field of intelligent manufacturing. This paper makes a horizontal comparison with the traditional simulation technology, systematically analyzes the connotation of digital twin technology based on big data, artificial intelligence and virtual reality, as well as its correlation, similarities and differences with traditional simulation technology. The analysis focuses on the whole life cycle of manufacturing enterprises, aims at the advantages and specific application of digital twin for intelligent operation and maintenance of complex multi-unit production system, expounds the feasibility of digital twinning to realize the whole life cycle management of manufacturing enterprises, and looks forward to its future development trend and direction.

References

[1]  吴慧欣. 三维建模技术的研究与应用[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2004.
[2]  刘康俊. 基于三维虚拟仿真的数字化车间建模优化研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017.
[3]  张超波. 虚拟现实在制造系统设计中的应用研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2016.
[4]  Edward Goldberg, H. (2004) The Building Information Model: Is BIM the Future for AEC Design? CADalyst, 21, 56-58.
[5]  闫锟. 基于BIM的工程项目全周期成本管理研究[D]: [硕士学位论文]. 天津: 天津大学, 2015.
[6]  卢阳光. 面向智能制造的数字孪生工厂构建方法与应用[D]: [博士学位论文]. 大连: 大连理工大学, 2020.
[7]  张悦. 数字孪生: 工业智能化的核心驱动[J]. 新理财, 2020(10): 32-34.
[8]  王丰圆. 基于数字化双胞胎的三维可视化车间系统研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019.
[9]  张政, 赵旭宇. 数字孪生驱动数字化转型与创新[J]. 通信企业管理, 2020(11): 56-58.
[10]  Committee NNBSP (2006) Overview Building Information Models. National Institute of Building Sciences.
[11]  吴付标. BIM之后, 数字孪生[EB/OL]. https://www.cnbim.com/2019/0729/5413.html, 2019-07-29.
[12]  周达坚. 数字孪生框架下的工业园区“产-运-存”联动优化决策方法[D]: [硕士学位论文]. 广州: 广东工业大学, 2019.
[13]  Section, I. (2017) Decomposition-Assisted Computational Technique Based on Surrogate Modeling for Real-Time Simulations. Complexity, 2017, Article ID: 1686230.
https://doi.org/10.1155/2017/1686230
[14]  费永辉. 基于数字孪生的柔性作业车间动态调度研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2019.
[15]  陶永, 李秋实, 赵罡. 面向产品全生命周期的绿色制造策略[J]. 中国科技论坛, 2016(9): 58-64.
[16]  黄群慧. 高度重视服务型制造创新发展[J]. 智慧中国, 2020(10): 42-44.
[17]  吴俊. 服务型制造创新发展方向——全生命周期管理[N]. 中国经济时报, 2020-09-18(04).
[18]  陶永, 王田苗, 李秋实, 赵罡. 基于“互联网+”的制造业全生命周期设计、制造、服务一体化[J]. 科技导报, 2016, 34(4): 45-49.
[19]  段功玲. 全生命周期成本管理——从地铁项目角度[D]: [硕士学位论文]. 武汉: 武汉工程大学, 2017.
[20]  Li, J., Tao, F., Cheng, Y. and Zhao, L. (2015) Big Data in Product Lifecycle Management. The International Journal of Advanced Manufacturing Technology, 81, 667-684.
https://doi.org/10.1007/s00170-015-7151-x
[21]  黄海松, 陈启鹏, 李宜汀, 姚立国, 张松松. 数字孪生技术在智能制造中的发展与应用研究综述[J]. 贵州大学学报(自然科学版), 2020, 37(5): 1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133