全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单细胞RNA测序技术及其在胚胎发育中的应用进展
Single-Cell RNA Sequencing Technology and Its Application in Embryonic Development

DOI: 10.12677/MD.2021.112018, PP. 113-119

Keywords: 单细胞RNA测序,胚胎发育,细胞异质性,基因表达,疾病
Single-Cell RNA Sequencing
, Embryonic Development, Cell Heterogeneity, Gene Expression, Diseases

Full-Text   Cite this paper   Add to My Lib

Abstract:

胚胎发育是一个复杂的过程,其受一系列细胞行为所调控。细胞是生物体结构和功能的基本单位,细胞命运的决定属于单细胞水平的过程。胚胎发育早期细胞数量有限,这是研究早期基因调控机理的一个重要问题。单细胞RNA测序是一种在单细胞水平上进行高通量测序分析的新技术,其显著提高了人们对细胞、组织与器官复杂性的认识。早期胚胎发育是胚胎发育的关键阶段,单细胞RNA测序技术的应用,不仅可发现胚胎发育早期的一些关键基因,而且还可构建器官发育的基因表达图谱,阐明各种细胞类型及其在细胞分化过程中的相互关系。同时单细胞RNA测序技术的广泛应用能够反映细胞间的异质性,从而有利于揭示疾病发生发展机制。本文综述了该技术与其近年来在胚胎发育中的应用进展,这有助于今后胚胎发育的基础研究以及指导临床相关疾病的诊治。
Embryonic development is a complex process which is regulated by a series of cellular behaviors. Cell is the fundamental unit of the structure and function of lives. The cell fate is a process that is decided at the single-cell level. The limited number of cells in the early stages of embryonic de-velopment is a challenge for studying early gene regulation. Single-cell sequencing is a new tech-nology for high-throughput sequencing analysis at the single-cell level. It has significantly increased the understanding of the complexity of cells, tissues and organs. Early embryonic development is the key stage of embryonic development. The application of single cell RNA sequencing technology can not only discover some key genes in early embryonic development, but also construct gene expression maps of organ development, and clarify various cell types and their relationships in the process of cell differentiation. The widespread application of single-cell RNA sequencing technology is reflecting the heterogeneity between cells, which is conducive to revealing the occurrence of disease development mechanism. This article reviews the technology and the application of single-cell RNA sequencing in embryonic development in recent years. It benefits embryonic development basic scientific research and guides the diagnosis and treatment of clinical diseases with embryonic development.

References

[1]  Hedlund, E. and Deng, Q. (2018) Single-Cell RNA Sequencing: Technical Advancements and Biological Applications. Molecular Aspects of Medicine, 59, 36-46.
https://doi.org/10.1016/j.mam.2017.07.003
[2]  Yasen, A., Aini, A., Wang, H., Li, W., Zhang, C., Ran, B., et al. (2020) Progress and Applications of Single-Cell Sequencing Techniques. Infection, Genetics and Evolution, 80, Article ID: 104198.
https://doi.org/10.1016/j.meegid.2020.104198
[3]  Wang, Y. and Navin, N.E. (2015) Advances and Applications of Single-Cell Sequencing Technologies. Molecular Cell, 58, 598-609.
https://doi.org/10.1016/j.molcel.2015.05.005
[4]  Papalexi, E. and Satija, R. (2018) Single-Cell RNA Sequencing to Explore Immune Cell Heterogeneity. Nature Reviews Immunology, 18, 35-45.
https://doi.org/10.1038/nri.2017.76
[5]  Patil, V.S., Madrigal, A., Schmiedel, B.J., Clarke, J., O’Rourke, P., de Silva, A.D., et al. (2018) Precursors of Human CD4+ Cytotoxic T Lymphocytes Identified by Single-Cell Transcriptome Analysis. Science Immunology, 3, eaan8664.
https://doi.org/10.1126/sciimmunol.aan8664
[6]  Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F. and Theis, F.J. (2016) Diffusion Pseudotime Robustly Reconstructs Lineage Branching. Nature Methods, 13, 845-848.
https://doi.org/10.1038/nmeth.3971
[7]  Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., et al. (2014) The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells. Nature Biotechnology, 32, 381-386.
https://doi.org/10.1038/nbt.2859
[8]  Qi, Z., Barrett, T., Parikh, A.S., Tirosh, I. and Puram, S.V. (2019) Sin-gle-Cell Sequencing and Its Applications in Head and Neck Cancer. Oral Oncology, 99, Article ID: 104441.
https://doi.org/10.1016/j.oraloncology.2019.104441
[9]  Stuart, T. and Satija, R. (2019) Integrative Single-Cell Analysis. Nature Reviews Genetics, 20, 257-272.
https://doi.org/10.1038/s41576-019-0093-7
[10]  杨明鑫, 魏鸿擎, 谢静远. 单细胞转录组测序及其在肾脏疾病研究中的应用进展[J]. 诊断学理论与实践, 2019, 18(4): 475-478.
[11]  Picelli, S., Faridani, O.R., Bj?rklund, A.K., Winberg, G., Sagasser, S. and Sandberg, R. (2014) Full-Length RNA-seq from Single Cells Using Smart-seq2. Nature Protocols, 9, 171-181.
https://doi.org/10.1038/nprot.2014.006
[12]  Hashimshony, T., Wagner, F., Sher, N. and Yanai, I. (2012) CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports, 2, 666-673.
https://doi.org/10.1016/j.celrep.2012.08.003
[13]  Rosenberg, A.B. and Roco, C.M. (2018) Single-Cell Profiling of the Developing Mouse Brain and Spinal Cord with Split-Pool Barcoding. Science, 360, 176-182.
https://doi.org/10.1126/science.aam8999
[14]  Hwang, B., Lee, J.H. and Bang, D. (2018) Single-Cell RNA Se-quencing Technologies and Bioinformatics Pipelines. Experimental & Molecular Medicine, 50, 1-14.
https://doi.org/10.1038/s12276-018-0071-8
[15]  李彤, 徐家伟, 孙莹璞. 单细胞转录组测序在生殖发育领域应用进展[J]. 国际生殖健康/计划生育杂志, 2019, 38(3): 217-221.
[16]  Gross, A., Schoendube, J., Zimmermann, S., Steeb, M., Zengerle, R. and Koltay, P. (2015) Technologies for Single-Cell Isolation. International Journal of Molecular Sciences, 16, 16897-16919.
https://doi.org/10.3390/ijms160816897
[17]  Kim, S., De Jonghe, J., Kulesa, A.B., Feldman, D., Vatanen, T., Bhattacharyya, R.P., et al. (2017) High-Throughput Automated Microfluidic Sample Preparation for Accurate Microbial Genomics. Nature Communications, 8, Article No. 13919.
https://doi.org/10.1038/ncomms13919
[18]  See, P., Lum, J., Chen, J. and Ginhoux, F. (2018) A Single-Cell Sequencing Guide for Immunologists. Front Immunol, 9, Article No. 2425.
https://doi.org/10.3389/fimmu.2018.02425
[19]  Fu, Q., Liu, C.J., Zhai, Z.S., Zhang, X., Qin, T. and Zhang, H.W. (2018) Single-Cell Non-coding RNA in Embryonic Development. In: Gu, J. and Wang, X., Eds., Single Cell Biomedicine, Vol. 1068, Springer, Singapore, 19-32.
https://doi.org/10.1007/978-981-13-0502-3_3
[20]  Alizadeh, Z., Kageyama, S. and Aoki, F. (2005) Degradation of Maternal mRNA in Mouse Embryos: Selective Degradation of Specific mRNAs after Fertilization. Molecular Re-production and Development, 72, 281-290.
https://doi.org/10.1002/mrd.20340
[21]  Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., et al. (2009) mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nature Method, 6, 377-382.
https://doi.org/10.1038/nmeth.1315
[22]  Peng, G., Suo, S., Chen, J., Chen, W., Chen, W., Yu, F., et al. (2016) Spatial Transcriptome for the Molecular Annotation of Lineage Fates and Cell Identity in Mid-Gastrula Mouse Embryo. Developmental Cell, 36, 681-697.
https://doi.org/10.1016/j.devcel.2016.02.020
[23]  Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., et al. (2019) The Single-Cell Transcriptional Landscape of Mammalian Organogenesis. Nature, 566, 496-502.
https://doi.org/10.1038/s41586-019-0969-x
[24]  Briggs, J.A., Weinreb, C., Wagner, D.E., Peshkin, L., Kirschner, M.W. and Klein, A.M. (2018) The Dynamics of Gene Expression in Vertebrate Embryogenesis at Single-Cell Resolution. Science, 360, eaar5780.
https://doi.org/10.1126/science.aar5780
[25]  Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., et al. (2013) Single-Cell RNA-Seq Profiling of Human Preimplantation Embryos and Embryonic Stem Cells. Nature Structural & Molecular Biology, 20, 1131-1139.
https://doi.org/10.1038/nsmb.2660
[26]  Petropoulos, S., Edsg?rd, D., Reinius, B., Deng, Q., Panula, S.P., Codeluppi, S., et al. (2016) Single-Cell RNA-seq Reveals Lineage and X Chromosome Dynamics in Human Preim-plantation Embryos. Cell, 165, 1012-1026.
https://doi.org/10.1016/j.cell.2016.03.023
[27]  Zhong, S., Zhang, S., Fan, X., Wu, Q., Yan, L., Dong, J., et al. (2018) A Single-Cell RNA-seq Survey of the Developmental Landscape of the Human Prefrontal Cortex. Nature, 555, 524-528.
https://doi.org/10.1038/nature25980
[28]  Gao, S., Yan, L., Wang, R., Li, J., Yong, J., Zhou, X., et al. (2018) Tracing the Temporal-Spatial Transcriptome Landscapes of the Human Fetal Digestive Tract Using Single-Cell RNA-Sequencing. Nature Cell Biology, 20, 721-734.
https://doi.org/10.1038/s41556-018-0105-4
[29]  Cui, Y., Zheng, Y., Liu, X., Yan, L., Fan, X., Yong, J., et al. (2019) Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. Cell Reports, 26, 1934-1950.e5.
https://doi.org/10.1016/j.celrep.2019.01.079
[30]  Li, G., Xu, A., Sim, S., Priest, J.R., Tian, X., Khan, T., et al. (2016) Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. Developmental Cell, 39, 491-507.
https://doi.org/10.1016/j.devcel.2016.10.014
[31]  DeLaughter, D.M., Bick, A.G., Wakimoto, H., McKean, D., Gorham, J.M., Kathiriya, I.S., et al. (2016) Single-Cell Resolution of Temporal Gene Expression during Heart Devel-opment. Developmental Cell, 39, 480-490.
https://doi.org/10.1016/j.devcel.2016.10.001
[32]  Zeng, Y., Liu, C., Gong, Y., Bai, Z., Hou, S., He, J., et al. (2019) Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-Thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity, 51, 930-948.e6.
https://doi.org/10.1016/j.immuni.2019.09.008
[33]  Kernfeld, E.M., Genga, R.M.J., Neherin, K., Magaletta, M.E., Xu, P. and Maehr, R. (2018) A Single-Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell Types and Developmental Maturation. Immunity, 48, 1258-1270.e6.
https://doi.org/10.1016/j.immuni.2018.04.015
[34]  Segal, J.M., Kent, D., Wesche, D.J., Ng, S.S., Serra, M., Oulès, B., et al. (2019) Single Cell Analysis of Human Foetal Liver Captures the Transcriptional Profile of Hepatobiliary Hybrid Progenitors. Nature Communications, 10, Article No. 3350.
https://doi.org/10.1038/s41467-019-11266-x
[35]  Brunskill, E.W., Park, J.S., Chung, E., Chen, F., Magella, B., Steven Potter, S. (2014) Single Cell Dissection of Early Kidney Development: Multilineage Priming. Development, 141, 3093-3101.
https://doi.org/10.1242/dev.110601
[36]  Magella, B., Adam, M., Potter, A.S., Venkatasubramanian, M., Chetal, K., Salomonis, N., et al. (2018) Cross-Platform Single Cell Analysis of Kidney Development Shows Stromal Cells Express Gdnf. Developmental Biology, 434, 36-47.
https://doi.org/10.1016/j.ydbio.2017.11.006
[37]  Menon, R., Otto, E.A., Kokoruda, A., Zhou, J., Zhang, Z., Yoon, E., et al. (2018) Single-Cell Analysis of Progenitor Cell Dynamics and Lineage Specification in the Human Fetal Kidney. Development, 145, dev164038.
https://doi.org/10.1242/dev.164038
[38]  Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., et al. (2020) Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 180, 585-600.e19.
https://doi.org/10.1016/j.cell.2020.01.009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133