|
煤变质热动力学方程的初步评判
|
Abstract:
基于吴冲龙先生的温度–时间–反射率煤变质热动力学方程,计算四例已知时间和温度求反射率、一例已知时间和反射率求温度以及计算褐煤临界温度和长焰煤临界温度。结果表明:温度–时间–反射率经验公式能在一定程度上可以解释煤变质作用,褐煤临界温度为49.3℃和长焰煤临界温度为56.9℃;应用反射率增量和时间增量耦合的方法制备石炭、侏罗、白垩纪成煤期的中煤级煤II温度–反射率(时间)图,并用等温水平线或等反射率垂直线说明“受热时间越长,煤化程度越高”等煤化学的有关论述。利用四川南桐煤田煤变质古地温场文献中的温度和有效变质时间进行交叉验证,进一步证明该方程有一定的精确实用性。
Using Mr. Wu Chonglong’s temperature-time-reflectivity coal metamorphism thermodynamic equation to calculate reflectivity for four cases of known time and temperature and to calculate temperature for one case of known time and reflectivity, all of those examples are proving that the temperature-time-reflectivity experience formula can explain the role of coal metamorphism to some extent. It is calculating that the critical temperature of lignite should be 49.3?C and that of long flame coal should be 56.9?C. A temperature-reflectivity (time) graph has been prepared for Carboniferous, Jurassic, and Cretaceous periods’ middle grade II coal through innovative application of reflectivity increment and time incremental coupling method. The isothermal horizontal line or iso-reflectivity vertical line in the graph can be used to explain the “longer heating time, higher degree of coalification” and other coal chemistry related discussion. Cross-verification with the temperature and metamorphism time in the literature for Nantong coalfield in Sichuan province further proves the accuracy and practicability of the equation.
[1] | 杨起. 中国煤变质研究[J]. 地球科学, 1989, 14(4): 341-345. |
[2] | 杨起. 中国煤的叠加变质作用[J]. 地学前缘, 1999, 6(Z1): 1-8. |
[3] | 杨起, 吴冲龙, 汤达祯, 等. 中国煤变质作用[J]. 地球科学: 中国地质大学学报, 1996, 21(3): 311-319. |
[4] | 曹代勇, 李小明, 邓觉梅. 煤化作用与构造–热事件的耦合效应研究——盆地动力学过程的地质记录[J]. 地学前缘, 2009, 16(4): 52-60. |
[5] | 吴冲龙, 杨起, 刘刚, 等. 煤变质作用热动力学分析的原理与方法[J]. 煤炭学报, 1997, 22(3): 225-229. |
[6] | Hood, A., Gutjahr, C.C.M. and Heacock, R.H. (1975) Organic Metamorphism and the Generation of Petroleum. AAPG Bulletin, 59, 986-996. https://doi.org/10.1306/83D91F06-16C7-11D7-8645000102C1865D |
[7] | Bostick, N.H., Cashman, S.M., McCulloh, T.H., et al. (1979) Gradients of Vitrinite Reflectance and Present Temperature in the Los Angeles and Ventura Basins, California. In: Oltz, D.F., Ed., Low Temperature Metamorphism of Kerogen and Clay Minerals, Pacific Section, SEPM (Society for Sedimentary Geology), Los Angeles, 65-96. |
[8] | 谭勇杰. 煤变质古地温恢复方法探讨[J]. 煤田地质与勘探, 1989(2): 30-36. |
[9] | 黄克兴, 谭勇杰. 四川南桐煤田煤变质的古地温场研究[J]. 煤炭学报, 1990, 15(4): 54-62. |
[10] | Pusey, W.C. (1973) How to Evaluate Potential Gas and Oil Source Rocks. World Oil, 176, 71-75. |
[11] | Epstein, A.G., Epstein, J.B. and Harris, J.D. (1977) Conodont Color Alteration—An Index to Organic Metamorphism. Geological Survey Professional Paper 995. United States Government Printing Office, Washington DC, 1-27.
https://doi.org/10.3133/pp995 |
[12] | 煤炭科学研究总院西安研究院. GB/T 6948-2008. 煤的镜质体反射率显微镜测定方法[S]. 西安: 中国煤炭工业协会, 2008. |
[13] | 李文华, 白向飞, 杨金和, 等. 烟煤镜质组平均最大反射率与煤种之间的关系[J]. 煤炭学报, 2006, 31(3): 342-345. |
[14] | 煤炭科学研究总院西安研究院. 煤炭行业标准: MT/T 1158-2011. 镜质体反射率的煤化程度分级[S]. 西安: 中国煤炭工业协会, 2011. |
[15] | 胡忠亚. 浅析温度、时间和压力对煤化作用的影响[J]. 硅谷, 2010(8): 4. |
[16] | 廖清发, 陈萍, 唐修义. 淮南望峰岗井田深部煤变质作用研究[J]. 煤炭技术, 2010, 29(3): 182-185. |
[17] | 张双全. 煤化学[M]. 徐州: 中国矿业大学出版社, 2015. |