全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

滇池土著沉水植物根际可培养解磷菌与环境因子相关性研究
Study on the Diversity of Culturable Phosphorus Solubilizing Bacteria and Relationship between the Environmental Factors in Rhizosphere of Submerged Plants in Dianchi Lake

DOI: 10.12677/AMB.2021.102014, PP. 115-123

Keywords: 滇池,沉水植物,解磷菌,多样性,相关性分析
Dianchi Lake
, Submerged Plants, Phosphate-Solubilizing Bacteria, Diversity, Redundancy Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究云南滇池4种土著沉水植物根际沉积物中可培养解磷菌群落结构和环境因子的相互关系。采用功能筛选培养的方法对15个沉水植物的根际和非根际沉积物样品中进行解磷菌分离培养,应用16S rDNA序列对分离得到的解磷菌进行系统发育分析,运用软件Biodap和冗余分析(redundancy analysis, RDA)分析解磷菌群落的丰富度及其与环境因子间的相关性。结果显示,从滇池沉水植物根际和非根际沉积物中共分离到可培养解磷菌86株,从属于8个属27个种;其中假单胞菌属(Pseudomonas)为优势菌群,占分离的22%,分布于该属的11个种;杆菌属(Bacillus)占分离总数的18%,共分离到3个种。滇池不同沉水植物根际沉积物中解磷菌的优势类群存在一定差异。冗余分析(RDA)的结果表明:沉水植物根际的沉积物中氧化还原电位(Eh)和沉积物间隙水的溶解性活性磷(SRP)对解磷菌群落结构有显著影响。
In order to explore the community structure and environmental factor characteristics of culturable phosphate-solubilizing bacteria (PSB) in the rhizosphere sediments of four native submerged plants in Dianchi Lake, Yunnan province. [Method] By using the method of functional screening medium and basing on the 16S rDNA sequence phylogenetic analysis of PSB, the PSB strains were isolated and identified from the rhizosphere and non-rhizosphere sediments and using the software BIODAP and Canoco analysis the diversity of PSB and the relationship between the environmental factors. The results showed that 86 strains of PSB were cultured and isolated, belonging to 27 species and 8 genera. Among them, the Pseudomonas was the dominant bacterium, accounting for 22% and distributed in 11 species of this genus. The Bacillus accounted for 18% of the total isolated species, and 3 species were isolated. The community structure of PSB was significantly different in the rhizosphere and non-rhizosphere sediments of the submerged plants in Dianchi Lake. RDA analysis found that the REDOX potential (Eh) and the soluble active phosphorus (SRP) were the main environmental factors for the distribution of PSB.

References

[1]  王琦, 高晓奇, 肖能文, 等. 滇池沉水植物的分布格局及其水环境影响因子识别[J]. 湖泊科学, 2018, 30(1): 157-170.
[2]  Brinson, M.M., Lugo, A.E. and Brown, S. (1981) Primary Productivity, Decomposition and Consumer Activity in Freshwater Wetlands. Annual Review of Ecology and Systematics, 12, 123-161.
https://doi.org/10.1146/annurev.es.12.110181.001011
[3]  卢姣姣, 张萌, 全水清, 等. 低氧、高铵和低光对沉水植物苦草(Vallisneria natans)生长与C-N代谢生理指标的影响特征[J]. 湖泊科学, 2018, 30(4): 1064-1074.
[4]  吴振斌, 邱东茹, 贺锋, 等. 沉水植物重建对富营养水体氮磷营养水平的影响[J]. 应用生态学报, 2003, 14(8): 1351-1353.
[5]  Adriana, C., Paolo, Z. and Amedeo, A. (2009) Growth and Nutrient Absorption of Two Submerged Aquatic Macrophytes in Mesocosms, for Reinsertion in a Eutrophicated Shallow Lake. Wetlands Ecology Manage, 17, 107-115.
https://doi.org/10.1007/s11273-008-9091-9
[6]  刘正文, 张修峰, 陈非洲, 等. 浅水湖泊底栖-敞水生境耦合对富营养化的响应与稳态转换机理: 对湖泊修复的启示[J]. 湖泊科学, 2020, 32(1): 1-10.
[7]  鲁小曼, 尚琨, 刘欣, 等. 长江口表层沉积物中可培养有机解磷菌多样性特征[J]. 海洋科学进展, 2019, 37(3): 495-507.
[8]  Yamamoto, Y., Satoh, N. and Hayashi, H. (1991) Distribution of Different Forms of Phosphorus and Phosphate-Solubilizing Bacteria in Lake Sediments. Japanese Journal of Limnology, 52, 205-213.
https://doi.org/10.3739/rikusui.52.205
[9]  孙晓杭, 张昱, 张斌亮, 等. 微生物作用对太湖沉积物磷释放影响的模拟实验研究[J]. 环境化学, 2006, 25(1): 24-27.
[10]  Huang, L., Du, S., Fan, L., et al. (2011) Microbial Activity Facilitates Phosphorus Adsorption to Shallow Lake Sediment. Journal of Soil and Sediments, 11, 185-193.
https://doi.org/10.1007/s11368-010-0305-4
[11]  Jensen, M., Liu, Z., Zhang, X., et al. (2017) The Effect of Biomanipulation on Phosphorus Exchange between Sediment and Water in Shallow, Tropical Huizhou West Lake, China. Limnologica Ecology and Management of Inland Waters, 63, 65-73.
https://doi.org/10.1016/j.limno.2017.01.001
[12]  高丽, 周健民. 磷在富营养化湖泊沉积物-水界面的循环[J]. 土壤通报, 2004, 35(4): 512-515.
[13]  Liang, J.L., Liu, J., Jia, P., et al. (2020) Novel Phosphate-Solubilizing Bacteria Enhance Soil Phosphorus Cycling Following Ecological Restoration of Land Degraded by Mining. The ISME Journal, 14, 1-14.
https://doi.org/10.1038/s41396-020-0632-4
[14]  胡晓娟, 李卓佳, 曹煜成, 等. 养殖池塘生态系统中磷的收支及解磷微生物的研究进展[J]. 安全与环境学报, 2010, 10(1): 7-11.
[15]  杨慧, 范丙全, 龚明波, 等. 一株新的溶磷草生欧文氏菌的分离、鉴定及其溶磷效果的初步研究[J]. 微生物学报, 2008, 48(1): 51-56.
[16]  国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002: 254-279.
[17]  孟亚媛, 王圣瑞, 焦立新, 等. 滇池表层沉积物氮污染特征及其潜在矿化能力[J]. 环境科学, 2015, 36(2): 471-480.
[18]  张文菊, 彭佩饮, 童成立, 等. 洞庭湖湿地有机碳垂直分布与组成特征[J]. 环境科学, 2005, 26(3): 56-60.
[19]  Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Research, 22, 4673-4680.
https://doi.org/10.1093/nar/22.22.4673
[20]  Kimura, M. (1980) A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. Journal of Molecular Evolution, 16, 111-120.
https://doi.org/10.1007/BF01731581
[21]  Studier, J.A. and Keppler, K.J. (1988) A Note on the Neighbor-Joining Algorithm of Saitou and Nei. Molecular Biology and Evolution, 5, 729-731.
[22]  Lep?, J. and ?milauer, P. (2003) Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511615146
[23]  Ingemann, J.S., Kühl, M. and Priemé, A. (2007) Different Bacterial Communities Associated with the Roots and Bulk Sediment of the Seagrass Zostera Marina. FEMS Microbiology Ecology, 64, 108-117.
https://doi.org/10.1111/j.1574-6941.2007.00373.x
[24]  赵小蓉, 林启美, 孙焱鑫, 等. 玉米根际与非根际解磷细菌的分布特点[J]. 生态学杂志, 2001, 20(6): 62-64.
[25]  樊竹青, 张灼. 滇池上层底泥解磷菌的区系特点[J]. 大理学院学报, 2007, 6(6): 21-23.
[26]  田翠翠, 王纯波, 李倩, 等. 轮叶黑藻(Hydrilla verticillata)对沉积物-水界面微观剖面理化参数的影响[J]. 湖泊科学, 2013, 25(5): 101-108.
[27]  张雪, 姜翠玲, 朱立琴, 等. 大型表面流人工湿地长期运行下底泥污染特性及氧化层甄别[J]. 湖泊科学, 2019, 31(3): 677-688.
[28]  曾巾, 杨柳燕, 梁医, 等. 南京玄武湖底泥微生物群落结构研究[J]. 生态科学, 2008, 27(5): 351-356.
[29]  赵安娜, 冯慕华, 郭萧, 等. 沉水植物氧化塘对污水厂尾水深度净化效果与机制的小试研究[J]. 湖泊科学, 2010, 22(4): 538-544.
[30]  张丁予, 章婷曦, 董丹萍, 等. 沉水植物对沉积物微生物群落结构影响: 以洪泽湖湿地为例[J]. 环境科学, 2016, 37(5): 144-151.
[31]  张亚朋, 章婷曦, 王国祥. 苦草(Vallisneria natans)对沉积物微生物群落结构的影响[J]. 湖泊科学, 2015, 27(3): 445-450.
[32]  东野脉兴, 樊竹青, 张灼, 等. 滇池微生物解磷与聚磷作用的实验研究及磷的现代沉积与微生物成矿作用[J]. 吉林大学学报(地球科学版), 2003, 33(3): 282-289.
[33]  王立志. 两种沉水植物对间隙水磷浓度的影响[J]. 生态学报, 2013, 35(4): 1051-1058.
[34]  郭万喜, 侯文华, 缪静, 等.不同水生植物对系统中磷分配的影响[J]. 北京化工大学学报(自然科学版), 2007, 34(1): 1-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133