全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于电成像测井图像孔隙度自动提取计算新方法
A New Method of Porosity Automatic Extraction and Calculation Based on Electrical Imaging Logging Image

DOI: 10.12677/JOGT.2021.432016, PP. 80-89

Keywords: 电成像,致密碳酸盐岩,灰度值,孔隙度提取,阈值分割
Electrical Imaging
, Tight Carbonate Rock, Gray Value, Porosity Extraction, Segmentation for Graphics

Full-Text   Cite this paper   Add to My Lib

Abstract:

致密碳酸盐岩储层孔隙结构复杂,发育类型多,孔隙度难以精确预测。通过对电成像测井图像进行处理,采用图像处理阈值分割技术对图像采集时的偏差进行校正,并提出一种新的计算方法提取图像灰度值,并通过灰度值与常规测井电性参数的相关性来对不同算法的优度进行评估,最后根据灰度值与实测孔隙度存在的相关性建立回归模型对某区段致密碳酸盐岩孔隙度进行预测。研究结果表明,采用散点拟合法针对致密碳酸盐岩结构非均质性较强、储层类型多样等特点具有较强的适应性,对孔隙度进行提取优于其他算法。该方法不仅预测更加精确致密,也能高效的完成孔隙度解释工作,为致密碳酸盐岩储层孔隙度预测探索了一条新的途径。
The pore structure of tight carbonate reservoir is complex and there are many types of development, so it is difficult to accurately predict the porosity. Through the processing of electrical imaging logging image, the image processing threshold segmentation technology is used to correct the deviation of image acquisition, and a new calculation method is proposed to extract the gray value of image, and the advantages of different algorithms are evaluated by the correlation between gray value and conventional logging electrical parameters. Finally, the regression model is established according to the correlation between gray value and measured porosity. The model is used to predict the porosity of tight carbonate rocks in a section. The results show that the scatter fitting method has strong adaptability to the characteristics of strong structural heterogeneity and diverse reservoir types of tight carbonate rocks, and it is superior to other algorithms in porosity extraction. This method can not only predict more accurately and compactly, but also complete porosity interpretation efficiently, which provides a new way for porosity prediction of tight carbonate reservoir.

References

[1]  司马立强, 疏壮志. 碳酸盐岩储层测井评价方法及应用[M]. 北京: 石油工业出版社, 2009.
[2]  Xie, F., et al. (2018) Production Prediction for Fracture-Vug Carbonate Reservoirs Using Electric Imaging Logging Data. Petroleum Exploration and Development, 45, 369-376.
https://doi.org /10.1016/S1876-3804(18)30041-7
[3]  Li, Y., et al. (2018) Theories and Practices of Carbonate Reservoirs Development in China. Petroleum Exploration & Development, 45, 712-722.
https://doi.org /10.1016/S1876-3804(18)30074-0
[4]  杨柳青, 查蓓, 陈伟. 基于深度神经网络的砂岩储层孔隙度预测方法[J]. 中国科技论文, 2020, 15(1): 73-80.
[5]  严禛, 伍星蓉. 基于BFO-BP神经网络的储层预测研究[J]. 中州煤炭, 2017, 39(7): 210-213.
[6]  郑宇哲, 叶朝辉, 刘西恩, 等. 基于深度学习的储层物性参数预测方法研究[J]. 电子世界, 2018(4): 23-26.
[7]  段友祥, 李根田. 联合神经网络在储层参数预测中的研究与应用[J]. 测井技术, 2017, 41(2): 176-182.
[8]  陈义祥, 任小峰, 牟瑜, 等. 基于电成像测井的致密碳酸盐岩储层有效性评价方法[J]. 测井技术, 2020, 2(44): 50-52.
[9]  李晓辉, 周彦球, 缑艳红, 等. 电成像测井孔隙度分析技术及其在碳酸盐岩储层产能预测中的应用[J]. 吉林大学学报(地球科学版), 2012, 42(4): 928-934.
[10]  平海涛, 秦瑞宝, 孙建孟, 等. 电成像测井孔隙度谱分析及其在复杂储层渗透率评价中的应用研究[J]. 地球物理学进展, 2020, 11(4): 1-8.
[11]  邹小林, 冯国灿. 融合视觉模型和最大熵的阈值分割算法[J]. 科学技术与工程, 2013, 13(6): 1496-1501, 1514.
[12]  宁彬. 图像处理技术在机动车车牌自动识别技术中的应用[J]. 科学技术与工程, 2013, 13(2): 366-371.
[13]  杨玉卿, 崔维平, 张翔. 基于电成像测井图像识别求取地层产状的新方法[J]. 石油物探, 2017, 56(2): 302-308.
[14]  王沁, 王璐, 袁代林. 基于Spearman的rho的Copula参数模型的选择[J]. 数学的实践与认识, 2011, 41(15): 145-150.
[15]  张程恩, 潘保芝, 张晓峰, 等. FMI测井资料在非均质储层评价中的应用[J]. 石油物探, 2011(6): 630-633.
[16]  张洁, 罗健, 夏瑜, 等. 阿尔奇公式的适用性分析及其拓展[J]. 地球物理学报, 2018, 61(1): 317-328.
[17]  Fu, H.C., Zou, C.C., Li, N., et al. (2016) A Quantitative Approach to Characterize Porosity Structure from Borehole Electrical Images and Its Application in a Carbonate Reservoir in the Tazhong Area, Tarim Basin. SPE Reservoir Evaluation & Engineering, 19, e127.
https://doi.org /10.2118/179719-PA
[18]  左程吉, 王祝文, 向旻, 等. 基于电成像测井孔隙度分析技术的火山岩孔隙径向非均质性研究[J]. 石油物探, 2016, 55(3): 449-454.
[19]  顾天奇, 张雷, 冀世军, 等. 封闭离散点的曲线拟合方法[J]. 吉林大学学报(工学版), 2015, 45(2): 437-441.
[20]  薛向阳. 一种改进的线性回归预测模型[J]. 科学技术与工程, 2010(12): 160-163.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133