全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GDGA-BP模型及其在干熄焦烧损控制中的应用
GDGA-BP Model and Its Application in Control of Dry Quenching Loss

DOI: 10.12677/SEA.2021.103044, PP. 396-405

Keywords: 神经网络,遗传算法,决策基因,干熄焦烧损
Neural Network
, Genetic Algorithm, Decision Gene, Dry Quenching Loss Rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章提出了一种基于决策基因的改进遗传算法(Gene-Decision Genetic Algorithms, GDGA),同时优化BP神经网络的隐含层节点数及初始权值、阈值,构建了GDGA-BP模型。首先,在进行遗传算法编码时采取了两种不同的编码方式,设计了决策算子以解决隐含层节点数对编码染色体长度的影响;然后在遗传算法流程中增加了染色体的锁存及调用,保证在迭代时遗传信息不会丢失,并对该算法做出自适应改进;最后通过对干熄焦烧损率的仿真及工艺实验,验证了该模型的优良性能及实用性。
In this paper, an improved gene-decision genetic algorithm (GDGA) based on Decision Gene is proposed, the number of hidden layer nodes, initial weights and thresholds of BP neural network is optimized, and the GDGA-BP model is constructed. Firstly, two different encoding methods were adopted in the genetic algorithm encoding, and decision operators were designed to solve the in-fluence of the number of hidden layer nodes on the length of encoding chromosomes. Then, the latch and call of chromosome are added to the genetic algorithm process to ensure that the genetic information will not be lost during iteration, and the algorithm is improved adaptatively. Finally, the simulation and technological experiment on the loss rate of dry quenching coke prove the ex-cellent performance and practicability of the model.

References

[1]  张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 580-588.
[2]  刘亚丽, 李英娜, 李川. 基于遗传算法优化BP神经网络的线损计算研究[J]. 计算机应用与软件, 2019, 36(3): 72-75.
[3]  曾小华, 李广含, 宋大凤, 李胜, 朱志成. 基于遗传算法优化的BP神经网络侧翻预警算法[J]. 华南理工大学学报(自然科学版), 2017, 45(2): 30-38.
[4]  Duan, X.C. (2019) Automatic Generation and Evolution of Personalized Curriculum Based on Genetic Algorithm. International Journal of Emerging Technologies in Learning (iJET), 14, 15-28.
https://doi.org/10.3991/ijet.v14i12.10812
[5]  Yan, C., et al. (2020) Improved Adaptive Genetic Algorithm for the Vehicle Insurance Fraud Identification Model Based on a BP Neural Network. Theoretical Computer Science, 817, 12-23.
https://doi.org/10.1016/j.tcs.2019.06.025
[6]  韩明红, 李凡, 邓家禔. 一种优化神经网络拓扑结构的主从式遗传算法[J]. 航空制造技术, 2004(2): 68-70+77.
[7]  Song, Y.Y., et al. (2020) The Method of BP Algorithm for Genetic Simulated Annealing Algorithm in Fault Line Selection. Journal of Physics: Conference Series, 1650, Article ID: 032187.
https://doi.org/10.1088/1742-6596/1650/3/032187
[8]  吕锐, 李庆奎. 焦炭烧损率测定及降低烧损率措施[J]. 燃料与化工, 2018, 49(3): 22-24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133