|
一种基于改进3D卷积的乒乓球球员动作识别算法
|
Abstract:
[1] | 王恺凡. 基于人脸识别的乒乓球智能训练平台设计[D]: [硕士学位论文]. 南京: 南京邮电大学, 2020. |
[2] | 丁朔. 基于智能语音交互的乒乓球训练系统的设计与实现[D]: [硕士学位论文]. 南京: 南京邮电大学, 2020. |
[3] | 杨波. 虚拟现实技术应用于高校乒乓球教学中的实证研究[D]: [硕士学位论文]. 兰州: 西北师范大学, 2020. |
[4] | 任云青. 智能乒乓球自动捡球机器人的设计与实现[D]: [硕士学位论文]. 南京: 南京邮电大学, 2020. |
[5] | 孙于成. 基于时空图卷积的乒乓球基础技术动作识别[D]: [硕士学位论文].安庆: 安庆师范大学, 2020. |
[6] | Martin, P.-E., Benois-Pineau, J., Péteri, R. and Morlier, J. (2020) 3D Attention Mechanism for Fine-Grained classification of table ten-nis strokes using a Twin Spatio-Temporal Convolutional Neural Networks. 25th International Conference on Pattern Recognition, Milano, January 2021. arXiv preprint arXiv:2012.05342. |
[7] | 杨静. 体育视频中羽毛球运动员的动作识别[J]. 自动化技术与应用, 2018, 37(10): 120-124. |
[8] | binti Rahmad, N.A., binti Sufri, N.A. J, bin As’ari, M.A., et al. (2019) Recognition of Badminton Action Using Convolutional Neural Network. Indonesian Journal of Electrical En-gineering and Informatics (IJEEI), 7, 750-756.
https://doi.org/10.11591/ijeei.v7i4.968 |
[9] | Piergiovanni, A.J. and Ryoo, M.S. (2018) Fine-Grained Activity Recognition in Baseball Videos. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, 18-22 June 2018, 1740-1748.
https://doi.org/10.1109/CVPRW.2018.00226 |
[10] | Tran, D., Bourdev, L., Fergus, R., et al. (2015) Learning Spati-otemporal Features with 3D Convolutional Networks. 2015 IEEE International Conference on Computer Vision, San-tiago, 7-13 December 2015, 4489-4497.
https://doi.org/10.1109/ICCV.2015.510 |
[11] | Shao, D., Zhao, Y., Dai, B. and Liu, D. (2020) FineGym: A Hierar-chical Video Dataset for Fine-Grained Action Understanding. 2020 IEEE/CVF Conference on Computer Vision and Pat-tern Recognition (CVPR), 13-19 June 2020, Seattle, 2616-2625. https://doi.org/10.1109/CVPR42600.2020.00269 |
[12] | Güler, R.A., Neverova, N. and Kokkinos, I. (2018) Densepose: Dense Human Pose Estimation in the Wild. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7297-7306.
https://doi.org/10.1109/CVPR.2018.00762 |
[13] | Neverova, N., Guler, R.A. and Kokkinos, I. (2018) Dense Pose Transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Proceedings of the European Conference on Computer Vision (ECCV), Springer, Cham, 128-143.
https://doi.org/10.1007/978-3-030-01219-9_8 |
[14] | 机器之心Pro.Facebook实时人体姿态估计: Dense Pose及其应用展望[EB/OL].
https://baijiahao.baidu.com/s?id=1625055353488715502&wfr=spider&for=pc, 2019-02-01. |
[15] | LeCun, Y., Bot-tou, L., Bengio, Y. and Haffner, P. (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791 |
[16] | Soomro, K., Zamir, A.R. and Shah, M. (2012) UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild. CoRR, 1212, 0402. |