全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimating Functional Brain Network with Low-Rank Structure via Matrix Factorization for MCI/ASD Identification

DOI: 10.4236/jamp.2021.98127, PP. 1946-1963

Keywords: Functional Brain Network, Matrix Factorization, Pearson’s Correlation, Sparse Representation, High-Order Functional Connection, Mild Cognitive Impairment, Autism Spectrum Disorder

Full-Text   Cite this paper   Add to My Lib

Abstract:

Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods.

References

[1]  Castellanos, F., Martino, A.D., Craddock, R.C., Mehta, A.D. and Milham, M.P. (2013) Clinical Applications of the Functional Connectome. NeuroImage, 80, 527-540.
https://doi.org/10.1016/j.neuroimage.2013.04.083
[2]  Wee, C.Y., Yap, P.T. and Shen, D. (2014) Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting-State Functional Connectivity Networks. Human Brain Mapping, 35, 3414-3430.
[3]  Geschwind, D.H. and Levitt, P. (2007) Autism Spectrum Disorders: Developmental Disconnection Syndromes. Science Direct, 17, 103-111.
https://doi.org/10.1016/j.conb.2007.01.009
[4]  Chaudhuri, K.R. and Schapira, A.H. (2009) Non-Motor Symptoms of Parkinson’s Disease: Dopaminergic Pathophysiology and Treatment. Lancet Neurology, 8, 464-474.
https://doi.org/10.1016/S1474-4422(09)70068-7
[5]  Supekar, K., Menon, V., Rubin, D., Musen, M. and Greicius, M. (2008) Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer’s Disease. PLOS Computational Biology, 4, e1000100.
https://doi.org/10.1371/journal.pcbi.1000100
[6]  Goedert, M. and Spillantini, M.G. (2006) A Century of Alzheimer’s Disease. Science, 314, 777-781.
https://doi.org/10.1126/science.1132814
[7]  Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L. and Fischl, B. (2009) Automated MRI Measures Identify Individuals with Mild Cognitive Impairment and Alzheimer’s Disease. Brain, 132, 2048-2057.
https://doi.org/10.1093/brain/awp123
[8]  Rombouts, S.A., Barkhof, F., Goekoop, R., Stam, C.J. and Scheltens, P. (2005) Altered Resting State Networks in Mild Cognitive Impairment and Mild Alzheimer’s Disease: An fMRI Study. Human Brain Mapping, 26, 231-239.
https://doi.org/10.1002/hbm.20160
[9]  Jie, B., Liu, M., Zhang, D. and Shen, D. (2018) Sub-network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis. IEEE Transactions on Image Processing, 27, 2340-2353.
https://doi.org/10.1109/TIP.2018.2799706
[10]  Chen, X., Han, Z., Zhang, L., Shen, C., Lee, S. and Shen, D. (2017) Extraction of Dynamic Functional Connectivity from Brain Grey Matter and White Matter for mci Classification. Human Brain Mapping, 38, 5019-5034.
https://doi.org/10.1002/hbm.23711
[11]  Yang, P., Zhou, F., Ni, D., Xu, Y., Wang, T. and Lei, B. (2019) Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment. IEEE Transactions on Cybernetics, 51, 1-14.
https://doi.org/10.1109/TCYB.2019.2940526
[12]  Bijsterbosch, J., Smith, S.M. and Beckmann, C.F. (2017) An Introduction to Resting State fMRI Functional Connectivity. Oxford University Press, Oxford.
[13]  Macke, J.H., Opper, M. and Bethge, M. (2011) Common Input Explains Higher-Order Correlations and Entropy in a Simple Model of Neural Population Activity. Physical Review Letters, 106, Article ID: 208102.
https://doi.org/10.1103/PhysRevLett.106.208102
[14]  Plis, S.M., Sui, J., Lane, T., Roy, S., Clark, V.P., Potluru, V.K., Huster, R.J., Michael, A., Sponheim, S.R., Weisend, M.P. and Caljoun, V.D. (2014) High-Order Interactions Observed in Multi-Task Intrinsic Networks Are Dominant Indicators of Aberrant Brain Function in Schizophrenia. NeuroImage, 102, 35-48.
https://doi.org/10.1016/j.neuroimage.2013.07.041
[15]  Chen, X., Zhang, H., Gao, Y. and Wee, Y.C. (2016) High-Order Resting-State Functional Connectivity Network for MCI Classification. Human Brain Mapping, 37, 3282-3296.
https://doi.org/10.1002/hbm.23240
[16]  Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S. and Shen, D. (2016) Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment. Journal of Alzheimer’s Disease, 54, 1095-1112.
https://doi.org/10.3233/JAD-160092
[17]  Masaya, M., Daichi, K., Kenji, L. and Masayuki, M. (2018) Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks. Sensors, 18, 1133.
https://doi.org/10.3390/s18041133
[18]  Linda, G., Renken, R.J., Emi, S., Maurits, N.M. and Lorist, M.M. (2015) A Brain-Wide Study of Age-Related Changes in Functional Connectivity. Cerebral Cortex, 25, 1987-1999.
https://doi.org/10.1093/cercor/bhu012
[19]  Bertolero, M.A., Yeo, B.T.T. and D’Esposito, M. (2015) The Modular and Integrative Functional Architecture of the Human Brain. Proceedings of the National Academy of Sciences of the United States of America, 112, E6798-E6807.
https://doi.org/10.1073/pnas.1510619112
[20]  Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., Miller, K.L., Nichols, T.E., Robinson, E.C., Salimi-Khorshidi, G., Woolrich, M.W., Barch, D.M., Ugurbil, K. and Van Essen, D.C. (2013) Functional Connectomics from Resting-State fMRI. Trends in Cognitive Sciences, 17, 666-682.
https://doi.org/10.1016/j.tics.2013.09.016
[21]  Lee, H., Lee, D.S., Kand, H., Kam, B. and Chung, M.K. (2012) Sparse Brain Network Recovery under Compressed Sensing. IEEE Transactions on Medical Imaging, 30, 1154-1165.
https://doi.org/10.1109/TMI.2011.2140380
[22]  Ehrlich andTobin, J. (2014) Networks of the Brain. Journal of Neuropathology Experimental Neurology, 73, 1191.
https://doi.org/10.1097/NEN.0000000000000142
[23]  Zhou, Y., Zhang, L., Teng, S., Qiao, L. and Shen, D. (2018) “Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification. Frontiers in Neuroscience, 12, 959.
https://doi.org/10.3389/fnins.2018.00959
[24]  Yan, C. and Zang, Y. (2010) DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Frontiers in Systems Neuroscience, 4, 13.
https://doi.org/10.3389/fnsys.2010.00013
[25]  Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B. and Joliot, M. (2002) Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15, 273-289.
https://doi.org/10.1006/nimg.2001.0978
[26]  Qiao, L., Zhang, H., Kim, M., Teng, S., Zhang, L. and Shen, D. (2016) Estimating Functional Brain Networks by Incorporating a Modularity Prior. NeuroImage, 141, 399-407.
https://doi.org/10.1016/j.neuroimage.2016.07.058
[27]  Sapatinas, T. (2004) The Elements of Statistical Learning. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167, 183-198.
https://doi.org/10.1111/j.1467-985X.2004.298_11.x
[28]  Kuo, F.Y. and Sloan, I.H. (2005) Lifting the Curse of Dimensionality. Notices of the American Mathematical Society, 52, 1320-1328.
[29]  Robert and Tibshirani (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58, 267-288.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
[30]  Szenkovits, A., Meszlenyi, R., Buza, K., Gasko, N., Lung, R.I. and Suciu, M. (2017) Feature Selection with a Genetic Algorithm for Classification of Brain Imaging Data. Advances in Feature Selection for Data and Pattern Recognition, 138, 158-202.
https://doi.org/10.1007/978-3-319-67588-6_10
[31]  Chang, C.C. and Lin, C. (2011) Libsvm : a Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2, 1-27.
https://doi.org/10.1145/1961189.1961199
[32]  Wee, C.Y., Yap, P.T., Zhang, D., Wang, L. and Shen, D. (2013) Group-Constrained Sparse fMRI Connectivity Modeling for Mild Cognitive Impairment Identification. Brain Structure Function, 219, 641-656.
https://doi.org/10.1007/s00429-013-0524-8
[33]  Li, W., Wang, Z., Zhang, L., Qiao, L. and Shen, D. (2017) Remodeling Pearson’s Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification. Frontiers in Neuroinformatics, 11.
https://doi.org/10.3389/fninf.2017.00055
[34]  Li, W., Qiao, L., Zhang, L., Wang, Z. and Shen, D. (2019) Functional Brain Network Estimation with Time Series Self-scrubbing. IEEE Journal of Biomedical and Health Informatics, 23, 2494-2504.
https://doi.org/10.1109/JBHI.2019.2893880
[35]  Albert, M.S., Dekosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B. and Phelps, C.H. (2011) The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dementia, 7, 270-279.
https://doi.org/10.1016/j.jalz.2011.03.008
[36]  Kesler, S.R. (2014) Default Mode Network as a Potential Biomarker of Chemotherapy-Related Brain Injury. Neurobiology of Aging, 35, S11-S19.
https://doi.org/10.1016/j.neurobiolaging.2014.03.036
[37]  Zhu, X., IlvSuk, H., Lee, S.W. and Shen, D. (2016) Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification. IEEE Transactions on Bio Medical Engineering, 63, 607-618.
https://doi.org/10.1109/TBME.2015.2466616
[38]  He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K. and Jiang, T. (2007) Regional Coherence Changes in the Early Stages of Alzheimer’s Disease: A Combined Structural and Resting-State Functional MRI Study. NeuroImage, 35, 488-500.
https://doi.org/10.1016/j.neuroimage.2006.11.042
[39]  Gomez, S., Jensen, P. and Arenas, A. (2009) Analysis of Community Structure in Networks of Correlated Data. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 80, Article ID: 016114.
https://doi.org/10.1103/PhysRevE.80.016114
[40]  Rubinov, M. and Sporns, O. (2011) Weight-Conserving Characterization of Complex Functional Brain Networks. NeuroImage, 56, 2068-2079.
https://doi.org/10.1016/j.neuroimage.2011.03.069
[41]  Chen, H., Zhang, Y., Zhang, L., Qiao, L. and Shen, D. (2021) Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification. Frontiers in Aging Neuroscience, 12.
https://doi.org/10.3389/fnagi.2020.595322
[42]  Ritter, K., Schumacher, J., Weygandt, M., Buchert, R., Allefeld, C. and Haynes, J.D. (2015) Multimodal Prediction of Conversion to Alzheimer’s Disease Based on Incomplete Biomarkers. Alzheimer’s Dementia: Diagnosis, Assessment Disease Monitoring, 1, 206-215.
https://doi.org/10.1016/j.dadm.2015.01.006
[43]  Kam, T.E., Zhang, H., Jiao, Z. and Shen, D. (2019) Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection. IEEE Transactions on Medical Imaging, 39, 478-487.
https://doi.org/10.1109/TMI.2019.2928790
[44]  Qiao, L., Zhang, L., Chen, S. and Shen, D. (2018) Data-Driven Graph Construction and Graph Learning: A Review. Neurocomputing, 312, 336-351.
https://doi.org/10.1016/j.neucom.2018.05.084
[45]  Meszlényi, R.J., Hermann, P., Buzr, K., Gal, V. and Vidnyanszky, Z. (2017) Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping. Frontiers in Neuroscience, 11, 75-90.
https://doi.org/10.3389/fnins.2017.00075
[46]  Friston, K.J., Harrison, L. and Penny, W. (2003) Dynamic Causal Modelling. NeuroImage, 19, 1273-1302.
https://doi.org/10.1016/S1053-8119(03)00202-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133