In this paper, we provide a rigorous derivation of asymptotic formula for the largest eigenvalues using the convergence estimation of the eigenvalues of a sequence of self-adjoint compact operators based on the polarisation tensors of perturbations resulting from the presence of small inhomogeneities reported with numerical tests for the Laplace operator.
References
[1]
Ern, A. and Guermond, J.L. (2000) Elements Finis: Theorie, Applications, Mise En Oeuvre. Mathematics Subject Classification. Springer-Verlag, Berlin, 340.
[2]
Gaussier, E. and Yvon, F. (2011) Modèles statistiques pour l’accès à l'information textuelle. LAVOISIER, 147.
[3]
Tracy, C.A. and Widom, H. (2002) The Distribution of the Largest Eigenvalue in the Gaussian Ensembles. In: Van Dicjen, J. and Vinet, L., Eds., Calogero-Moser-Sutherland Models, Springer, New York, 461-472. https://doi.org/10.1007/978-1-4612-1206-5_29
[4]
Johnstone, I.M. (2001) On the Distribution of the Largest Eigenvalue in Principal Component Analysis. The Annals of Statistics, 29, 295-327.
https://doi.org/10.1214/aos/1009210544
[5]
Bioldeau, M. (2002) Asymptotic Distribution of the Largest Eigenvalue. Communications in Statistics-Simulation and Computation, 31, 357-337.
https://doi.org/10.1081/SAC-120003847
[6]
Soshnikov, A. (2002) Note an Universality of the Distribution of the Largest Eienvalues in Certain Sample Covariance Matrices. Journal of Statistical Physics, 108, 1033-1056. https://doi.org/10.1023/A:1019739414239
[7]
Ng, M., Qi, L. and Zhou, G. (2009) Finding the Largest Eigenvalue of a Non-Negative Tensor. SIAM Journal of Matrix Analysis and Applications, 31, 1090-1099.
https://doi.org/10.1137/09074838X
[8]
Chang, K.C., Pearson, K. and Zhang, T. (2008) Perron-Frobenius Theorem for Non-Negative Tensors. Communications in Mathematical Sciences, 6, 507-520.
https://doi.org/10.4310/CMS.2008.v6.n2.a12
[9]
Chang, K.C., Pearson, K. and Zhang, T. (2011) Primitivity, the Convergence of the NZQ Method, and the Largest Eigenvalue for Non-Negative Tensors. SIAM Journal on Matrix Analysis and Applications, 32, 806-819.
https://doi.org/10.1137/100807120
[10]
Liu, Y., Zhou, G. and Ibrahim, N.F. (2010) An Always Convergent Algorithm for the Largest Eigenvalue of an Irreducible Non-Negative Tensor. Journal of Computational Applied Mathematics, 235, 286-292.
https://doi.org/10.1016/j.cam.2010.06.002
[11]
Gozzi, M. and Khelifi, A. (2017) On the Behavior of Resonant Frequencies in the Presence of Small Anisotropic Imperfections. Indagationes Mathematicae, 28, 1240-1257. https://doi.org/10.1016/j.indag.2017.09.007
[12]
Ammari, H., Kang, H. and Li, M. (2009) Layer Potential Techniques in Spectral Analysis. De Mathematical Surveys and Monographs, Volume 153, American Mathematical Society, Providence, 35. https://doi.org/10.1090/surv/153/10
[13]
Ozawa, S. (1983) An Asymptotic Formula for the Eigenvalues of the Laplacian in a Three Dimensional Domain with a Small Hole. Journal of the Faculty of Science, the University of Tokyo Section 1A, 30, 243-277.
[14]
Besson, G. (1985) Comportement asymptotique des valeurs propres du Laplacian dans un domaine avec un trou. Bulletin de la Société Mathématique de France, 113, 211-230. https://doi.org/10.24033/bsmf.2028
[15]
Sumbatyan, M.A. and Scalia, A. (2019) Equations of Mathematical Diffraction Theory. CRC Press, Boca Raton, 312 p.
[16]
Zakharov, V. (2009) Math 456 Lecture Notes: Bessel Functions and Their Applications to Solutions of Partial Differential Equations. 13-15.
[17]
Khelifi, A. (2007) Asymptotic Property and Convergence Estimation for the Eigenelements of the Laplace Operator. Applicable Analysis, 86, 1249-1264.
https://doi.org/10.1080/00036810701598039
[18]
Ammari, H. and Kang, H. (2004) Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities. Journal of Mathematical Analysis and Applications, 296, 190-208.
https://doi.org/10.1016/j.jmaa.2004.04.003
[19]
Hermann, W. (1912) Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Mathematische Annalen, 71, 441-479.
https://doi.org/10.1007/BF01456804
[20]
Ammari, H. and Kang, H. (2003) High-Order Terms in the Asymptotic Expansions of the Steady-State Voltage Potentials in the Presence of Conductivity Inhomogeneities of Small Diameter. SIAM Journal on Mathematical Analysis, 34, 1152-1166.
https://doi.org/10.1137/S0036141001399234
[21]
Roe, J. (1999) Elliptic Operators, Topology, and Asymptotic Methods. Second Edition, Chapman and Hall, London.
[22]
Osborn, J.E. (1975) Spectral Approximations for Compact Operators. Mathematics of Computation, 29, 712-725. https://doi.org/10.1090/S0025-5718-1975-0383117-3
[23]
Ardent, W., Nittka, R., Peter, W. and Steiner, F. (2009) Weyl’s Law: Spectral Properties of the Laplacian in Mathematics and Physics. In: Arendt, W. and Schleich, W.P., Eds., Mathematical Analysis of Evolution, Information, and Complexity, Wiley-VCH, Weinheim, 1-71. https://doi.org/10.1002/9783527628025.ch1