Basaltic rocks and their content of ultramafic xenoliths are common in the Ghab Pliocene Volcanic Field in northwestern Syria in the form of lava flows, cinder cones and pyroclastic deposits. The rocks occur within the Ghab pull-?apart graben that formed by sinister strike slip faults within the zone that defines the boundary between the African and the Arabian plates. Three petrographic types occur: basanite, olivine basalt and more commonly alkali olivine basalt. The peridotite xenoliths are spinel lherzolite and harzburgite.?Geochemical analysis indicates that the basalts are mostly alkaline to subalkaline.?A distinctive feature of these rocks is the narrow compositional variations in the content of most major oxides and minor elements, SiO2?(44.33 - 46.43 wt%) and MgO (4.01 - 8.28 wt%). Some of the refractory and high field strength elements and incompatible minor elements in the basalts are relatively high (Cr average = 303 ppm and Ni average = 185 ppm) compared with?their content in average basalts. These geochemical characteristics reflect crystallization of the Ghab basalts from pristine and primary magmas that have experienced minimal fractional crystallization and crustal contamination. Similarly, chemical compositions of the ultramafic xenoliths vary within a restricted geochemical range. They are compatible with the generation of these rocks from partial melting of a primitive mantle pyrolite to yield the xenoliths.?These magmatic processes operated during the Pliocene in a regional?transtensional stress environment attending the development of the Dead Sea Rift.
References
[1]
[1]Giannérini, G., Campredon, R., Feraud, G. and Abo Zakhem, B. (1988) Déformations intraplaques et volcanisme associé: exemple de la plaque arabique au Cénozoïque. Bulletin de la Société Géologique de France, 6, 937-947. https://doi.org/10.2113/gssgfbull.IV.6.937
[2]
Shaw, J.E., Baker, J.A., Menzies, M.A., Thirlwall, M.F. and Ibrahim, K.M. (2003) Petrogenesis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): A Mixed Lithosphere-Asthenosphere Source Activated by Lithospheric Extension. Journal of Petrology, 44, 1657-1679. https://doi.org/10.1093/petrology/egg052
[3]
Lustrino, M. and Wilson M. (2007) The Circum-Mediterranean Anorogenic Cenozoic Igneous Province. Earth-Science Reviews, 81, 1-65. https://doi.org/10.1016/j.earscirev.2006.09.002
[4]
Ma, G., Malpas, J., Xenophontos, C. and Chan, Q. (2011) Petrogenesis of Latest Miocene Quaternary Continental Intraplate Volcanism along the Northern Dead Sea Fault System (Al Ghab-Homs Volcanic Field), Western Syria: Evidence for Lithosphere-Asthenosphere Interaction. Journal of Petrology, 52, 401-430. https://doi.org/10.1093/petrology/egq085
[5]
Sharkov, E., Bogina, M. and Chistyakov, A. (2017) Magmatic Systems of Large Continental Igneous Provinces. Geoscience Frontiers, 8, 621-640. https://doi.org/10.1016/j.gsf.2016.03.006
[6]
Westaway, R., Demir, T. and Seyrek, A. (2008) Geometry of the Turkey-Arabia and Miocene to Mid-Pliocene: The Role of the Malatya-Ovacık Fault Zone in Eastern Turkey. eEarth, 3, 27-35. https://doi.org/10.5194/ee-3-27-2008
[7]
Shaw, J., Baker, A., Kent, K., Ibrahim, M. and Menzies, M. (2007) The Geochemistry of the Arabian Lithospheric Mantle—A Source for Intraplate Volcanism. Journal of Petrology, 48, 1495-1512. https://doi.org/10.1093/petrology/egm027
[8]
Dawod, S., Al-Mishwat, A. and Bilal, A. (2010) Alkaline Magmatic Rocks from the Late Triassic to Early Cretaceous Qastal Almaaf Melange, Northwestern Syria. Kuwait Journal of Science and Engineering, 37, 135-157.
[9]
Dawod, S. and Al-Mishwat, A. (2016) The Geochemistry of Pliocene Volcanism in the Shahba Region, South of Syria. An-Najah University Journal of Research (Natural Sciences), 30, 54-70.
[10]
Dawod, S., Al-Mishwat, A. and Al-Abdalla, A. (2017) Pliocene Volcanic Activity of the Harrat-Ash-Sham, South of Syria: Geochemistry and Petrogenesis. Iranian Journal of Earth Sciences, 9, 31-38.
[11]
Brew, G., Lupa, J., Barazangi, M., Sawaf, T., Al-Imam, A., et al. (2001) Structure and Tectonic Development of the Ghab Basin and the Dead Sea Fault System, Syria. Journal of the Geological Society of London, 158, 665-674. https://doi.org/10.1144/jgs.158.4.665
[12]
Nixon, P.H. (1987) Mantle Xenoliths. John Wiley, New York.
[13]
Eastell, J. and Willis, J.P. (1990) A Low Dilution Fusion Technique for the Analysis of Geological Samples. X-Ray Spectrometry, 19, 3-14. https://doi.org/10.1002/xrs.1300190103
[14]
Lloyd, F.E., Nixon, P.H., Hornung, G. and Condliffe, E. (1987) Regional K-Metasomatism in the Mantle beneath the West Branch of the East African Rift: Alkali Clinopyroxenite Xenoliths in Highly Potassic Magmas. In: Nixon, P.H., Ed., Mantle Xenoliths, Wiley, Chichester, 641-659.
[15]
Al-Mishwat, A. (2015) CIPWFULL: A Software Program for Calculations of Comprehensive CIPW Norms of Igneous Rocks. Mathematical Geosciences, 47, 441-453. https://doi.org/10.1007/s11004-014-9568-4
[16]
Le Bas, M.J., Le Maitre R.W. and Streckeisen, A.A. (1986) A Classification of Volcanic Rocks Based on the Total Alkalis-Silica Diagram. Journal of Petrology, 27, 745-750. https://doi.org/10.1093/petrology/27.3.745
[17]
Wedepohl, K.H. (1975) Contribution to Chemical Data to Assumption about the Origin of Magmas from the Mantle. Forschr Mineral Stuttgart, 52, 141-172.
[18]
Lustrino, M. and Sharkov, E.V. (2006) Neogene Volcanic Activity of Western Syria and Its Relationship with Arabian Plate Kinematics. Journal of Geodynamics, 42, 115-139. https://doi.org/10.1016/j.jog.2006.06.003
[19]
Nasir, S., Al-Sayigh, A., Alharthy, M. and Al-Lazki, A. (2006) Geochemistry and Petrology of Tertiary Volcanic Rocks and Related Ultramafic Xenoliths from the Central and Eastern Oman Mountains. Lithos, 1, 249-270. https://doi.org/10.1016/j.lithos.2006.03.002
[20]
Yaxley, G.M., Green, D.H. and Kamenetsky, V. (1998) Carbonatite Metasomatism in the Southeastern Australian Lithosphere. Journal of Petrology, 39, 1917-1930. https://doi.org/10.1093/petroj/39.11-12.1917
[21]
Neumann, E.R., Wulff-Pedersen, E., Pearson, N.J. and Spencer, E.A. (2002) Mantle Xenoliths from Tenerife (Canary Islands): Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts Inducing Ca Metasomatism. Journal of Petrology, 43, 825-857. https://doi.org/10.1093/petrology/43.5.825
[22]
Francalanci, L., Innocenti, F., Manetti, P. and Savascein, M.Y. (2000) Neogene Alkaline Volcanism of the Afyon-Isparta Area, Turkey: Petrogenesis and Geodynamic Implications. Mineralogy and Petrology, 70, 285-312. https://doi.org/10.1007/s007100070007
[23]
Paul, D.K., Ray, A., Das, B., Patil, S.K. and Biswas, K.S. (2007) Petrology, Geochemistry and Paleomagnetism of the Earliest Magmatic Rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, 96, 42-61.
[24]
Krienitz, M., Haase, K., Mezger, K. and Shaikh-Mashail, M.A. (2007) Magma Genesis and Mantle Dynamics at the Harrat Ash Shamah Volcanic Field (Southern Syria). Journal of Petrology, 48, 1513-1542. https://doi.org/10.1093/petrology/egm028
[25]
Bell, B.R., Claydon, R.V. and Rogers, G. (1994) The Petrology and Geochemistry of Cone-Sheets from the Cuillin Igneous Complex, Isle of Skye: Evidence for Combined Assimilation and Fractional Crystallization during Lithospheric Extension. Journal of Petrology, 35, 1055-1094. https://doi.org/10.1093/petrology/35.4.1055
[26]
Preston, R., Bell, J.B. and Rogers, G. (1988) The Loch Scridain Xenolithic Sill Complex, Isle of Mull, Scotland: Fractional Crystallization, Assimilation, Magma-Mixing and Crustal Anatexis in Subvolcanic Conduits. Journal of Petrology, 39, 519-550. https://doi.org/10.1093/petroj/39.3.519
[27]
Hughes, C. (1982) Igneous Petrology. Development in Petrology. Elsevier, New York.
[28]
Ibrahim, K.M. and Al-Malabeh A. (2006) Geochemistry and Volcanic Features of Harrat El Fahda: A Young Volcanic Field in Northwest Arabia, Jordan. Journal of Asian Earth Sciences, 27, 147-154. https://doi.org/10.1016/j.jseaes.2005.01.009
[29]
Reiners, P.W. (2002) Temporal-Compositional Trends in Intraplate Basalt Eruptions: Implications for Mantle Heterogeneity and Melting Processes. Geochemistry, Geophysics, Geosystems, 3, 1525-2027. https://doi.org/10.1029/2001GC000250
[30]
Sigmarsson, O., Carn, S. and Carracedo, J.C. (1988) Systematics of U-Series Nuclides in Primitive Lavas from the 1730-1736 Eruptions on Lanzarote, Canary Islands, and Implications for the Role of Garnet Pyroxenites during Oceanic Basalt Formations. Earth and Planetary Science Letters, 162, 137-151. https://doi.org/10.1016/S0012-821X(98)00162-9
[31]
Thomas, L.E., Hawkesworth, C.J., Van Calsteren, P., Turner, S.P. and Rogers, N.W. (1999) Melt Generation beneath Ocean Islands: A U-Th-Ta Isotope Study from Lanzarote in the Canary Islands. Geochim Cosmochim Acta, 63, 4081-4099. https://doi.org/10.1016/S0016-7037(99)00310-5
[32]
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., et al. (1979) The Abundances of Major, Minor and Trace Elements in the Earth’s Mantle as Derived from Primitive Ultramafic Nodules. In: Proceedings of the 10th Lunar and Planetary Science Conference, Pergamon Press, Houston, 2031-2050.
[33]
Krienitz, M., Haase, K., Mezger, K., Eckardt, V. and Shaikh-Mashail, M.A. (2006) Magma Genesis and Crustal Contamination of Continental Interpolate Lava in Northwestern Syria. Contributions to Mineralogy and Petrology, 151, 698-716. https://doi.org/10.1007/s00410-006-0088-1
[34]
Sharkov, E.V. and Laz’ko, E. (1988) Igneous Rocks. AN. USSR. Nauka, Moscow, 310 p. (In Russian)
[35]
Weinstein, Y., Navon, O., Altherr, R. and Stein, M. (2006) The Role of Lithospheric Mantle Heterogeneity in the Generation of Plio-Pleistocene Alkali Basaltic Suites from NW Harrat Ash Shaam. Journal of Petrology, 47, 1017-1050. https://doi.org/10.1093/petrology/egl003
[36]
Ma, G., Wang, K.L., Malpas, J., Iizuka, Y., Xenophontos, C., et al. (2015) Melt Pockets and Spongy Clinopyroxenes in Mantle Xenoliths from the Plio-Quaternary Al Ghab Volcanic Field, NW Syria: Implications for the Metasomatic Evolution of the Lithosphere. In: Khan, A. and Deschamps, F., Eds., The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, Springer, Berlin, 205-257. https://doi.org/10.1007/978-3-319-15627-9_7
[37]
Gasperini, D., Bosch, D., Braga, R., Bondi, M., Macera, P., et al. (2006) Ultramafic Xenoliths from the Veneto Volcanic Province (Italy): Petrological and Geochemical Evidence for Multiple Metasomatism of the SE Alps Mantle Lithosphere. Geochemical Journal, 40, 377-404. https://doi.org/10.2343/geochemj.40.377
[38]
Stein, M. and Katz, A. (1989) The Composition of the Subcontinental Lithosphere beneath Israel: Inferences from Peridotite Xenoliths. Journal of Earth Sciences, 38, 75-87.