We have designed an optical separation device called dual-area mirror for the data link of orbital angular momentum (OAM) multiplexing. Experiments show that the OAM multiplexed beams can be switched by using dual-area mirrors, using OOK to modulate four channels separately to form two inputs, channel A and channel B. There are two OAM beams that are multiplexed in each of channel A and channel B, using a spatial light modulator (SLM) to convert the OAM multiplexed beams in each channel. One of the beams is converted into a Gaussian beam, and then separated by a dual-area mirror, so as to realize the switch of a beam carrying different data in the two channels. Then these channels are detected. The waveform indicates that the switch is successful, and the measured optical power indicates that the dual-area mirror can reduce the bit error rate in the communication links. In addition, the device reduces the experimental cost, is easy to implement, is easy to integrate, and increases the angle between the separated beams.
References
[1]
Ramaswami, R., Sivarajan, K. and Sasaki, G. (2010) Optical Networks: A Practical Perspective. Morgan Kaufmann Publishers, Boston. https://www.researchgate.net/publication/216545893_Optical_Networks_A_Practical_Perspective
[2]
Mokhtar, A. and Azizoğlu, M. (1998) Adaptive Wavelength Routing in All-Optical Networks. IEEE/ACM Transactions on Networking, 6, 197-206. https://doi.org/10.1109/90.664268
[3]
Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y.X., Yue, Y., Dolinar, S., Tur, M. and Willner, A.E. (2012) Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nature Photonics, 6, 488-496. https://doi.org/10.1038/nphoton.2012.138
[4]
Fazal, I.M., Ahmed, N., Wang, J., Yang, J.Y., Yan, Y., Shamee, B., Huang, H., Yue, Y., Dolinar, S., Tur, M. and Willner, A.E. (2012) 2 Tbit/s Free-Space Data Transmission on Two Orthogonal Orbital-Angular-Momentum Beams Each Carrying 25 WDM Channels. Optics Letters, 37, 4753-4755. https://doi.org/10.1364/OL.37.004753
[5]
Huang, H. Xie, G.D., Yan, Y., Ahmed, N, Ren, Y.X., Yue, Y., Rogawski, D., Tur, M., Erkmen, B., Birnbaum, K., Dolinar, S., Lavery, M., Padgett, M.J. and Willner, A.E. (2013) 100 Tbit/s Free-Space Data Link Using Orbital Angular Momentum Mode Division Multiplexing Combined with Wavelength Division Multiplexing. Optical Fiber Communication Conference, Anaheim, 17-21 March 2013, OTh4G.5. https://doi.org/10.1364/OFC.2013.OTh4G.5
[6]
Yue, Y., Bozinovic, N., Ren, Y.X., Huang, H., Tur, M., Kristensen, P., Ramachandran, S. and Willner, A.E. (2013) 1.6-Tbit/s Muxing, Transmission and Demuxing through 1.1-km of Vortex Fiber Carrying 2 OAM Beams Each with 10 Wavelength Channels. Optical Fiber Communication Conference, Anaheim, 17-21 March 2013, OTh4G.2. https://doi.org/10.1364/OFC.2013.OTh4G.2
[7]
Djordjevic, I.B. (2011) Deep-Space and Near-Earth Optical Communications by Coded Orbital Angular Momentum (OAM) Modulation. Optics Express, 19, 14277-14289. https://doi.org/10.1364/OE.19.014277
[8]
Yao, A.M. and Padgett, J.M. (2011) Orbital Angular Momentum: Origins, Behavior and Applications. Advances in Optics and Photonics, 3, 161-204. https://doi.org/10.1364/AOP.3.000161
[9]
Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E. and Ramachandran, S. (2013) Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science, 340, 1545-1548. https://doi.org/10.1126/science.1237861
[10]
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. and Woerdman, J.P. (1992) Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Physical Review, 45, 8185-8189. https://doi.org/10.1103/PhysRevA.45.8185
[11]
Tomkos, I., Azodolmolky, S., Sole-Pareta, J., Careglio, D. and Palkopoulou, E. (2014) A Tutorial on the Flexible Optical Networking Paradigm: State of the Art, Trends, and Research Challenges. Proceedings of the IEEE, 102, 1317-1337. https://doi.org/10.1109/JPROC.2014.2324652
[12]
Mamadou, D., Shen, F., Dedo, M., Zhou, Q.F., Guo, K. and Guo, Z.Y. (2019) High-Efficiency Sorting and Measurement of Orbital Angular Momentum Modes Based on the March-Zehnder Interferometer and Complex Phase Gratings. Measurement Science and Technology, 30, Article ID: 075201. https://iopscience.iop.org/article/10.1088/1361-6501/ab0e62 https://doi.org/10.1088/1361-6501/ab0e62
[13]
Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Willner, A.E., Dolinar, S. and Tur, M. (2012) Experimental Demonstration of 100-Gbit/s DQPSK Data Exchange between Orbital-Angular-Momentum Modes. Optical Fiber Communication Conference, Los Angeles, 4-8 March 2012, OW1I.5. https://doi.org/10.1364/OFC.2012.OW1I.5
[14]
Ahmed, N., Huang, H., Ren, Y.X., Yan, Y., Xie, G.D., Tur, M. and Willner, A.E. (2014) Reconfigurable 2 × 2 Orbital Angular Momentum Based Optical Switching of 50-Gbaud QPSK Channels. Optics Express, 22, 756-761. https://doi.org/10.1364/OE.22.000756
Yue, Y., Huang, H., Ahmed, N., Yan, Y., Ren, Y.X., Xie, G.D., Rogawski, D., Tur, M. and Willner, A.E. (2013) Reconfigurable Switching of Orbital-Angular-Momentum-Based Free-Space Data Channels. Optics Letters, 38, 5118-5121. https://doi.org/10.1364/OL.38.005118
[17]
Willner, A.E., Huang, H., Ahmed, N., Yue, Y. and Willner, M.J. (2014) Data Switching in Communication Networks Using Orbital-Angular-Momentum Multiplexing. Photonics in Switching 2014, San Diego, 13-17 July 2014, PT1B.1. https://doi.org/10.1364/PS.2014.PT1B.1
[18]
Ahmed, A., Huang, H., Yue, Y., Yan, Y., Ren, Y.X. and Willner, A.E. (2012) Demonstration of Add/Drop Multiplexer for 100-Gbit/s RZ-QPSK Channels over Spatially Multiplexed Orbital Angular Momentum Modes. IEEE Photonics Conference, Burlingame, 23-27 September 2012, 600-601. https://doi.org/10.1109/IPCon.2012.6358764
[19]
Huang, H., Yue, Y., Yan, Y., Ahmed, N., Ren, Y.X., Tur, M. and Willner, A.E. (2013) Liquid-Crystal-on-Silicon-Based Optical Add/Drop Multiplexer for Orbital-Angular-Momentum-Multiplexed Optical Links. Optics Letters, 38, 5142-5145. https://doi.org/10.1364/OL.38.005142
[20]
Ke, X.Z. and Chen, S.T. (2020) Reconfigurable Orbital Angular Momentum Exchange Assisted by Dual-Area Mirror. Optics Engineering, 59, 116104-116111. https://doi.org/10.1117/1.OE.59.11.116104