全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pentamode-Based Coding Metasurface for Underwater Acoustic Stealth

DOI: 10.4236/jamp.2021.97117, PP. 1829-1836

Keywords: Pentamode Metamaterials, Coding Metasurface Structure, Underwater Sound Scattering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coding metasurface draws amounts of research interests due to its potential for achieving sophisticated functions in wave manipulation by using simple logical unit cells with out-of-phase responses. In this paper, we present a novel acoustic coding metasurface structure for underwater sound scattering reduction based on pentamode metamaterials. The metasurface is composed of two types of hexagonal pentamode unit cells with phase responses of 0 and π respectively. The units are arranged in random 1-bit coding sequence to achieve low-scattering underwater acoustic stealth effect. Full-wave simulation results are in good accordance with the theoretical expectation. The optimized arrangement resulted in the distribution of scattered underwater acoustic waves and suppression of the far field scattering coefficient over a wide range of incident angles. We show that pentamode-based coding metasurface provides an efficient scheme to achieve underwater acoustic stealth by ultrathin structures.

References

[1]  Li, Y., Liang, B., Gu, Z.M., Zou, X.Y. and Cheng, J.C. (2013) Reflected Wavefront Manipulation Based on Ultrathin Planar Acoustic Metasurfaces. Scientific Reports, 3, 2546. https://doi.org/10.1038/srep02546
[2]  Zhao, J.J., Li, B.W., Chen, Z.N. and Qiu, C.W. (2013) Redirection of Sound Waves Using Acoustic Metasurface. Applied Physics Letters, 103, 151604. https://doi.org/10.1063/1.4824758
[3]  Zhai, S., Chen, H., Ding, C., Shen, F., Luo, C. and Zhao, X. (2015) Manipulation of Transmitted Wave Front Using Ultrathin Planar Acoustic Metasurfaces. Applied Physics A, 120, 1283-1289. https://doi.org/10.1007/s00339-015-9379-6
[4]  Mei, J. and Wu, Y. (2014) Controllable Transmission and Total Reflection through an Impedance-Matched Acoustic Metasurface. New Journal of Physics, 16, 123007. https://doi.org/10.1088/1367-2630/16/12/123007
[5]  Zhao, J.J., Li, B.W., Chen, Z.N. and Qiu, C.W. (2013) Redirection of Sound Waves Using Acoustic Metasurface. Applied Physics Letters, 103, 151604. https://doi.org/10.1063/1.4824758
[6]  Zuo, S.Y., Tian, Y., Wei, Q., Cheng, Y. and Liu, X.J. (2018) Acoustic Analog Computing Based on a Reflective Metasurface with Decoupled Modulation of Phase and Amplitude. J. Appl. Phys, 123, 091704. https://doi.org/10.1063/1.5004617
[7]  Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.-P., Capasso, F. and Gaburro, Z. (2011) Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334, 333. https://doi.org/10.1126/science.1210713
[8]  Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I. and Cummer, S.A. (2014) Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface. Nature Communications, 5, 5553. https://doi.org/10.1038/ncomms6553
[9]  Tang, K., Qiu, C., Ke, M., Lu, J., Ye, Y. and Liu, Z. (2014) Anomalous Refraction of Airborne Sound through Ultrathin Metasurfaces. Sci. Rep., 4, 6517. https://doi.org/10.1038/srep06517
[10]  Ding, C., Chen, H., Zhai, S., Liu, S. and Zhao, X. (2015) The Anomalous Manipulation of Acoustic Waves Based on Planar Metasurface with Split Hollow Sphere. J. Phys. D: Appl. Phys., 48, 045303. https://doi.org/10.1088/0022-3727/48/4/045303
[11]  Li, Y., Jiang, X., Li, R., Liang, B., Zou, X., Yin, L. and Cheng, J. (2014) Experimental Realization of Full Control of Reflected Waves with Subwavelength Acoustic Metasurfaces. Phys. Rev. Appl., 2, 064002. https://doi.org/10.1103/PhysRevApplied.2.064002
[12]  Tang, K., Qiu, C., Lu, J., Ke, M. and Liu, Z. (2015) Focusing and Directional Beaming Effects of Airborne Sound through a Planar Lens with Zigzag Slits. J. Appl. Phys., 117, 024503. https://doi.org/10.1063/1.4905910
[13]  Cui, T.J., Qi, M.Q., Wan, X., Zhao, J. and Cheng, Q. (2014) Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials. Light: Sci. Appl., 3, e218. https://doi.org/10.1038/lsa.2014.99
[14]  Giovampaola, C.D. and Engheta, N. (2014) Digital Metamaterials. Nat. Mater., 13, 1115. https://doi.org/10.1038/nmat4082
[15]  Paquay, M., Iriarte, J., Ederra, I., Gonzalo, R. and de Maagt, P. (2007) Thin AMC Structure for Radar Cross-Section Reduction. IEEE Transactions on Antennas and Propagation, 55, 3630-3638. https://doi.org/10.1109/TAP.2007.910306
[16]  Kaina, N., Dupré, M., Lerosey, G. and Fink, M. (2014) Shaping Complex Microwave Fields in Reverberating Media with Binary Tunable Metasurfaces. Sci Rep, 4, 6693. https://doi.org/10.1038/srep06693
[17]  Li, Y.B., Li, L.L., Xu, B.B., Wu, W., Wu, R.Y., Wan, X., Cheng, Q. and Cui, T.J. (2016) Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging. Sci Rep, 6, 23731. https://doi.org/10.1038/srep23731
[18]  Zhang, X.G., Jiang, W.X., Tian, H.W. and Cui, T.J. (2018) Controlling Radiation Beams by Low-Profile Planar Antenna Arrays with Coding Elements. ACS Omega, 3, 10601-10611. https://doi.org/10.1021/acsomega.8b01679
[19]  Chang, L., Li, Y., Zhang, Z. and Feng, Z. (2018) Reconfigurable 2-Bit Fixed-Frequency Beam Steering Array Based on Microstrip Line. IEEE Trans. Antennas Propag., 66, 683-691. https://doi.org/10.1109/TAP.2017.2776960
[20]  Gao, L.-H., Cheng, Q., Yang, J., Ma, S.-J., Zhao, J., Liu, S., Chen, H.-B., He, Q., Jiang, W.-X., Ma, H.-F., Wen, Q.-Y., Liang, L.-J., Jin, B.-B., Liu, W.-W., Zhou, L., Yao, J.-Q., Wu, P.-H. and Cui, T.-J. (2015) Broadband Diffusion of Terahertz Waves by Multi-Bit Coding Metasurfaces. Light Sci Appl, 4, e324. https://doi.org/10.1038/lsa.2015.97
[21]  Liang, L., Qi, M., Yang, J., Shen, X., Zhai, J., Xu, W., Jin, B., Liu, W., Feng, Y., Zhang, C., Lu, H., Chen, H.-T., Kang, L., Xu, W., Chen, J., Cui, T.J., Wu, P. and Liu, S. (2015) Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials. Adv. Opt. Mater., 3, 1374. https://doi.org/10.1002/adom.201500206
[22]  Tian, Y., Wei, Q., Cheng, Y., Xu, Z. and Liu, X.J. (2015) Broadband Manipulation of Acoustic Wavefronts by Pentamode Metasurface. Applied Physics Letters, 107, 221906. https://doi.org/10.1063/1.4936762
[23]  Lu, Z.M., Cai, L., Wen, J.-H. and Chen, X. (2019) Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density. CHIN. PHYS. LETT., 36, 024301. https://doi.org/10.1088/0256-307X/36/2/024301
[24]  Fu, M.H. and Yin, J.R. (1999) Equivalent Elastic Parameters of the Honeycomb Core. Acta Mechanica Sinica, 31, 113-118. (In Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133