Nanocrystalline Cu-Ta alloy films were deposited on glass slides by
magnetron sputtering. Microstructure characterization proved that most of the tantalum
atoms are segregated in the grain boundaries. Nanoindentation creep
measurements were performed on it to uncover the stability mechanism of grain
boundary segregation on nanocrystalline materials. It is found that segregation
can effectively slow down the creep strain rate and the grain boundary
activities. The suppressed grain boundary activities endow the alloy with a
stable microstructure during plastic deformation and annealing.
References
[1]
Gleiter, H. (1989) Nanocrystalline Materials. Progress in Materials Science, 33, 223-315.
https://doi.org/10.1016/0079-6425(89)90001-7
[2]
Chen, B., Lutker, K., Raju, S.V., Yan, J., Kanitpanyacharoen, W., Lei, J., et al. (2012) Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity. Science, 338, 1448-1451. https://doi.org/10.1126/science.1228211
[3]
Tang, C., Xiao, Z., Luo, F., Wang, J., Ma, C. and Zhang, W. (2012) Structural Characteristics and Magnetic Properties of Bulk Nanocrystalline Fe84Zr2Nb4B10 Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering Consolidation. Rare Metals, 31, 255-259. https://doi.org/10.1007/s12598-012-0501-z
[4]
Wang, G., Lian, J., Jiang, Q., Sun, S. and Zhang, T.-Y. (2014) High Resolution Transmissionelectron Microscopic In-Situ Observations of Plastic Deformation of Compressed Nanocrystalline Gold. Journal of Applied Physics, 116, Article ID: 103518.
https://doi.org/10.1063/1.4895550
[5]
Shi, X.-B., Cui, L.-S., Liu, Z.-Y., Jiang, D.-Q. and Han, X.-D. (2014) Microstructure Ofstress-Induced Martensite in Nanocrystalline NiTi Shape Memory Alloy. RareMetals, 33, 379-82. https://doi.org/10.1007/s12598-014-0343-y
[6]
Wang, G.Y., Lian, J.S. and Zhang, T.Y. (2013) High Resolution Transmission Electron Microscopy in Situ Investigation into the Spontaneous Coalescence of Gold Nanoparticles at Room Temperature. RSC Advances, 3, 24017-24020.
https://doi.org/10.1039/c3ra43261k
[7]
Fu, B., Han, J., Guo, S.-Q., Wang, Z., Zhang, P., Pan, Z.-J., et al. (2018) Room-Temperature and High-Temperature Magnetic Permeability of Co-Doped Nanocrystalline Alloys. Rare Metals, 37, 427-32.
https://doi.org/10.1007/s12598-018-1037-7
[8]
Li, H.-J., Wu, Q., Yue, M., Li, Y.-Q., Zhu, R.-C., Liang, J.-M., et al. (2020) Structure and Magnetic Properties of Nanocrystalline Dysprosium Powders. Rare Metals, 3, 28-35. https://doi.org/10.1007/s12598-018-01201-2
[9]
Wang, G.Y., Jiang, Z.H., Jiang, Q. and Lian, J.S. (2008) Mechanical Behavior of an Electrodeposited Nanostructured Cu with a Mixture of Nanocrystalline Grains and Nanoscale Growth Twins in Submicrometer Grains. Journal of Applied Physics, 104, Article ID: 084305. https://doi.org/10.1063/1.2999379
[10]
Bach, J., Stoiber, M., Schindler, L., Höppel, H.W. and Göken, M. (2020) Deformation Mechanisms and Strain Rate Sensitivity of Bimodal and Ultrafine-Grained Copper. Acta Materialia, 186, 363-373. https://doi.org/10.1016/j.actamat.2019.12.044
Sedeek, K., Makram, N., Hantour, H., Amer, T.Z. and Said, S.A. (2019) An Explicit and Novel Structure, Lattice Dynamics, and Photoemission of La-Doped Nanocrystalline SrZrO3 Perovskite. Rare Metals, 40, 105-112.
https://doi.org/10.1007/s12598-019-01326-y
[13]
George, Z.V. and Mohammadreza, Y. (2016) Role of Grain Boundary on the Sources of Size Effects. Computational Materials Science, 117, 315-329.
https://doi.org/10.1016/j.commatsci.2016.01.025
[14]
Prasad, M. and Chokshi, A.H. (2012) Deformation-Induced Thermally Activated Grain Growth in Nanocrystalline Nickel. Scripta Materialia, 67, 133-136.
https://doi.org/10.1016/j.scriptamat.2012.03.041
[15]
Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H. and Hemker, K.J. (2006) Stress-Assisted Discontinuous Grain Growth and Its Effect on the Deformation Behavior of Nanocrystalline Aluminum Thin Films. Acta Materialia, 54, 2253-2263. https://doi.org/10.1016/j.actamat.2006.01.023
[16]
Wang, J., Han, L., Li, X., Huang, Y., Liu, Y. and Wang, Z. (2020) Temperature-Dependent Evolution of Strength of Nanocrystalline Ni(Mo) Alloys at the Mo Solubility Limit. Materials Science and Engineering: A, 786, Article ID: 139326.
https://doi.org/10.1016/j.msea.2020.139326
Lin, Y., Zhu, J., Han, J., Ma, X. and Wang, G. (2020) Effect of Strains in Grain Boundary Modification on Plasticity and Plasticizing Mechanism of Commercial-Purity Nickel. Materials Today Communications, 24, Article ID: 101177.
https://doi.org/10.1016/j.mtcomm.2020.101177
[19]
Liu, C., Lu, W., Weng, G.J. and Li, J. (2019) A Cooperative Nano-Grain Rotation and Grain-Boundary Migration Mechanism for Enhanced Dislocation Emission and Tensile Ductility in Nanocrystalline Materials. Materials Science and Engineering: A, 756, 284-290. https://doi.org/10.1016/j.msea.2019.04.055
[20]
Venkataraman, A., Linne, M., Daly, S. and Sangid, M.D. (2019) Criteria for the Prevalence of Grain Boundary Sliding as a Deformation Mechanism. Materialia, 8, Article ID: 100499. https://doi.org/10.1016/j.mtla.2019.100499
[21]
Raviathul Basariya, M., Mukhopadhyay, N.K., Sripathi, S. and Padmanabhan, K.A. (2016) Grain Size Softening Effect in Intermetallics. Journal of Alloys and Compounds, 673, 199-204. https://doi.org/10.1016/j.jallcom.2016.02.258
[22]
Cao, L. and Koslowsiki, M. (2015) Rate-Limited Plastic Deformation in Nanocrystalline Ni. Journal of Applied Physics, 117, Article ID: 244301.
https://doi.org/10.1063/1.4922812
[23]
Cao, Y., Wang, Y.B., An, X.H., Liao, X.Z., Kawasaki, M., Ringer, S.P., Langdonc, T.G. and Zhu, Y.T. (2015) Grain Boundary Formation by Remnant Dislocations from the De-Twinning of Thin Nano-Twins. Scripta Materialia, 100, 98-101.
https://doi.org/10.1016/j.scriptamat.2015.01.001
[24]
Yu, H.L., Lu, C., Tieu, A.K., Li, H.J., Godbole, A., Kong, C. and Zhao, X. (2016) Simultaneous Grain Growth and Grain Refinement in Bulk Ultrafine-Grained Copper under Tensile Deformation at Room Temperature. Metallurgical and Materials Transactions A, 47, 3785-3789. https://doi.org/10.1007/s11661-016-3573-9
[25]
Zhang, L., Lu, C., Zhang, J. and Tieu, K. (2016) A Dual Deformation Mechanism of Grain Boundary at Different Stress Stages. Materials Letters, 167, 278-283.
https://doi.org/10.1016/j.matlet.2015.12.063
[26]
Millett, P.C., Selvam, R.P. and Saxena, A. (2007) Stabilizing Nanocrystalline Materials with Dopants. Acta Materialia, 55, 2329-2336.
https://doi.org/10.1016/j.actamat.2006.11.028
[27]
Renk O., Hohenwarter, A., Eder, K., Kormout, K.S., Cairney, J.M. and Pippan, R. (2015) Increasing the Strength of Nanocrystalline Steels by Annealing: Is Segregation Necessary? Scripta Materialia, 95, 27-30.
https://doi.org/10.1016/j.scriptamat.2014.09.023
[28]
Darling, K.A., Robert, A.J., Mishin, Y., Mathaudhu, S.N. and Kecskes, L.J. (2013) Grain Size Stabilization of Nanocrystalline Copper at High Temperatures by Alloying with Tantalum. Journal of Alloys and Compounds, 573, 142-150.
https://doi.org/10.1016/j.jallcom.2013.03.177
[29]
Zeng, X., Fan, X.G., Li, H.W., Zhan, M. and Li, S.H. (2019) Grain Morphology Related Microstructural Developments in Bulk Deformation of 2219 Aluminum Alloy Sheet at Elevated Temperature. Materials Science and Engineering: A, 76, 328-338.
https://doi.org/10.1016/j.msea.2019.06.022
[30]
Darling, K.A., Rajagopalan, M., Komarasamy, M., Bhatia, M.A., Hornbuckle, B.C., Mishra, R.S. and Solanki, K.N. (2016) Extreme Creep Resistance in a Microstructurally Stable Nanocrystalline Alloy. Nature, 537, 378-381.
https://doi.org/10.1038/nature19313
[31]
Li, H. and Ngan, A.H.W. (2003) Size Effects of Nanoindentation Creep. Journal of Materials Research, 19, 513-522. https://doi.org/10.1557/jmr.2004.19.2.513
[32]
Gu, Y., Xiang, Y. and Srolovitz, D.J. (2016) Relaxation of Low-Angle Grain Boundary Structure by Climb of the Constituent Dislocations. Scripta Materialia, 114, 35-40. https://doi.org/10.1016/j.scriptamat.2015.11.016
[33]
Kong, Q.P. and Fang, Q.F. (2016) Progress in the Investigations of Grain Boundary Relaxation. Critical Reviews in Solid State and Materials Sciences, 41, 192-216.
https://doi.org/10.1080/10408436.2015.1135416
[34]
Cao, Z.H., Lu, H.M., Meng, X.K. and Ngan, A.H.W. (2009) Indentation Size Dependent Plastic Deformation of Nanocrystalline and Ultrafine Grain Cu Films at Nanoscale. Journal of Applied Physics, 105, Article ID: 083521.
https://doi.org/10.1063/1.3110087
[35]
Cao, Z.H., Lu, P.Y., Lu, H.M., Huang, Y.L., Zhou, Y.C. and Meng, X.K. (2009) Indentation Size Effects on the Creep Behavior of Nanocrystalline Tetragonal Ta films. Scripta Materialia, 60, 415-418. https://doi.org/10.1016/j.scriptamat.2008.11.016
[36]
Wang, F., Huang, P. and Xu, K.W. (2007) Time Dependent Plasticity at Real Nanoscale Deformation. Applied Physics Letters, 90, 161921.
https://doi.org/10.1063/1.2730735
[37]
Li, W.B. and Warren, R. (1993) A Model for Nano-Indentation Creep. Acta Metallurgica et Materialia, 41, 3065-3069. https://doi.org/10.1016/0956-7151(93)90119-D