MoO3 and 5% MoO3/ZnO were prepared by impregnation method using (NH4)6Mo7O24,
4H2O as precursor and ZnO as support. The prepared samples were
characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM),
infra red (FTIR) and UV-Vis diffuse reflectance (DRS)spectroscopies and photo-electrochemistry.
The XRD pattern showed that the MoO3 powder treated at 700°C is a
single-phase crystallizing in an orthorhombic structure with a direct optical
transition (2.70 eV). The hetero-junction 5% MoO3/ZnO was photo-electrochemically characterized to assess its feasibility for
H2 production under visible light. The capacitance potential (C-2 f(E)) characteristic of
MoO3 plotted in Na2SO4, (0.1 M) electrolyte
indicates n-type conduction with a flat band potential of -0.54 VSCE. The
photocatalytic activity was performed for the photoreduction of water to
hydrogen under visible light illumination. The best performance occurs at pH ~
7 with an evolved volume of 5.9 mL.
References
[1]
Aouali, F.Z., Becherif, M., Ramadan, H.S., Emziane, M., Khellaf, A. and Mohammedi, K. (2017) Analytical Modelling and Experimental Validation of Proton Exchange Membrane Electrolyser for Hydrogen Production. International Journal of Hydrogen Energy, 42, 1366-1374. https://doi.org/10.1016/j.ijhydene.2016.03.101
[2]
Grätzel, M. (2001) Photoelectrochemical Cells. Nature, 414, 338-344.
https://doi.org/10.1038/35104607
[3]
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A. and Lewis, N.S. (2010) Solar Water Splitting cells. ACS Publications, 110, 6446-6473.
https://doi.org/10.1021/cr1002326
[4]
Tachibana, Y., Vayssieres, L. and Durrant, J.R. (2012) Artificial photosynthesis for solar water-splitting. Nature Photonics, 6, 511-518.
https://doi.org/10.1038/nphoton.2012.175
[5]
Belhadi, A., Nadjem, I., Zaidat, S., Boudjemaa, A. and Trari, M. (2015) Hydrogen Evolution under Visible Light over the Heterojunction p-CuO/n-ZnO Prepared by Impregnation Method. International Journal of Energy Research, 39, 1909-1916.
https://doi.org/10.1002/er.3386
[6]
Han, Z., Qiu, F., Eisenberg, R., Holland, P.L. and Krauss, T.D. (2012) Robust Photogeneration of H2 in Water Using Semi-Conductor Nanocrystals and a Nickel Catalyst. Science, 80, 1321-1324. https://doi.org/10.1126/science.1227775
[7]
Tebibel, H., Khellaf, A., Menia, S. and Nouicer, I. (2017) Design, Modelling and Optimal Power and Hydrogen Management Strategy of an off Grid PV System for Hydrogen Production Using Methanol Electrolysis. International Journal of Hydrogen Energy, 42, 14950-14967. https://doi.org/10.1016/j.ijhydene.2017.05.010
[8]
Boumaza, S., Belhadi, A., Doulache, M. and Trari, M. (2012) Photocatalytic Hydrogen Production over NiO Modified Silica under Visible Light Irradiation. International Journal of Hydrogen Energy, 37, 4908-4914.
https://doi.org/10.1016/j.ijhydene.2011.12.116
[9]
Menia, S., Tebibel, H., Lssouane, F., Khellaf, A. and Nouicer, I. (2017) Hydrogen Production by Methanol Aqueous Electrolysis Using Photovoltaic Energy, Algerian Potential. International Journal of Hydrogen Energy, 42, 8661-8669.
https://doi.org/10.1016/j.ijhydene.2016.11.178
[10]
Belhadi, A., Boumaza, S., Djadoun, A., Trari, M. and Cherifi, O. (2016) Methane Steam Reforming on Supported Nickel, Effect of Nickel Content for Product Hydrogen. Open Journal of Physical Chemistry, 6, 34-41.
https://doi.org/10.4236/ojpc.2016.62003
[11]
Touahra, F., Sehailia, M., Halliche, D., Bachari, K., Saadi, A. and Cherifi, O. (2016) (MnO/Mn3O4)-NiAl Nanoparticles as Smart Carbon Resistant Catalysts for the Production of Syngas by Means of CO2 Reforming of Methane, Advocating the Role of Concurrent Carbothermic Redox Looping in the Elimination of Coke. International Journal of Hydrogen Energy, 41, 21140-21156.
https://doi.org/10.1016/j.ijhydene.2016.08.194
[12]
Enneti, R.K. and Wolfe, T.A. (2012) Agglomeration during Reduction of MoO3. International Journal of Refractory Metals and Hard Materials, 31, 47-50.
https://doi.org/10.1016/j.ijrmhm.2011.09.004
[13]
Patzke, G.R., Krumeich, F. and Nesper, R. (2002) Oxidic Nanotubes and Nanorods—Anisotropic Modules for a Future Nanotechnology. Angewandte Chemie International Edition, 41, 2446-2461.
https://doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
[14]
Hamelmann, F., Gesheva, K., Ivanova, T., Szekeres, A., Abroshev, M. and Heinzmann, U. (2005) Optical and Electrochromic Characterization of Multilayered Mixed Metal Oxide Thin Films. The Journal of Optoelectronics and Advanced Materials, 7, 393-399.
[15]
Rabalais, J.W., Colton, R.J. and Guzman, A.M. (1974) Trapped Electrons in Substoichiometric MoO3 Observed by X-Ray Electron Spectroscopy. Chemical Physics Letters, 29, 131-133. https://doi.org/10.1016/0009-2614(74)80149-1
[16]
Ellefson, C.A., Marin-Flores, O., Ha, S. and Norton, M.G. (2012) Synthesis and Applications of Molybdenum (IV) Oxide. Journal of Materials Science, 47, 2057-2071.
https://doi.org/10.1007/s10853-011-5918-5
[17]
Debecker, D.P., Stoyanova, M., Rodemerck, U. and Gaigneaux, E.M. (2010) Facile Preparation of MoO3/SiO2-Al2O3 Olefin Metathesis Catalysts by Thermal Spreading, Studies in Surface Science and Catalysis, 175, 581-585.
https://doi.org/10.1016/S0167-2991(10)75113-2
[18]
Youn-Su, K., Hyo-Jin, A., Hee-Sang, S., Hoon, N.S., Tae-Yeon, S. and Bae, K.W. (2007) Pt-Embedded MoO3 Electrodes For Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters, 10, 180-183. https://doi.org/10.1149/1.2739212
[19]
Ghorai, T.K., Dhak, D., Biswas, S.K., Dalai, S. and Pramanik, P. (2007) Photocatalytic Oxidation of Organic Dyes by Nano-Sized Metal Molybdate Incorporated Titanium Dioxide (MxMoxTi1-XO6) (M = Ni, Cu, Zn) Photocatalysts. Journal of Molecular Catalysis A, Chemical, 273, 224-229.
https://doi.org/10.1016/j.molcata.2007.03.075
[20]
Lou, X.W. and Zeng, H.C. (2002) Hydrothermal Synthesis of α-MoO3 Nanorods via Acidification of Ammonium Heptamolybdate Tetrahydrate. Chemistry of Materials, 14, 4781-4789. https://doi.org/10.1021/cm0206237
[21]
Song, J., Ni, X., Zhang, D. and Zheng, H. (2006) Fabrication and Photoluminescence Properties of Hexagonal MoO3 Rods. Solid State Sciences, 8, 1164-1167.
https://doi.org/10.1016/j.solidstatesciences.2006.05.002
[22]
Mahajan, S.S., Mujawar, S.H., Shinde, P.S., Inamdar, A.I. and Patil, P.S. (2008) Concentration Dependent Structural, Optical and Electrochromic Properties of MoO3 Thin Films. International Journal of Electrochemical Science, 3, 953-960.
[23]
Chithambararaj, A. and Chandra, B.A. (2011) Hydrothermal Synthesis of Hexagonal and Orthorhombic MoO3 Nanoparticles. Journal of Alloys and Compounds, 509, 8105-8110. https://doi.org/10.1016/j.jallcom.2011.05.067
[24]
Chithambararaj, A. and Chandra, B.A. (2011) Investigation on Structural, Thermal, Optical and Sensing Properties of Meta-Stable Hexagonal MoO3 Nanocrystals of One Dimensional Structure. Beilstein Journal of Nanotechnology, 2, 585-592.
https://doi.org/10.3762/bjnano.2.62
[25]
Agrawal, A., Cronin, J.P. and Zhang, R. (1993) Review of Solid State Electrochromic Coatings Produced Using Sol-Gel Techniques. Solar Energy Materials & Solar Cells, 31, 9-21. https://doi.org/10.1016/0927-0248(93)90003-L
[26]
Zhang, Y., Kuai, S., Wang, Z. and Hu, X. (2000) Preparation and Electrochromic Properties of Li-Doped MoO3 Films Fabricated by the Peroxo Sol-Gel Process. Applied Surface Science, 165, 56-59. https://doi.org/10.1016/S0169-4332(00)00369-X
[27]
Shinde, S.S., Shinde, P.S., Oh, Y.W., Haranath, D., Bhosale, C.H. and Rajpure, K.Y. (2012) Structural, Optoelectronic, Luminescence and Thermal Properties of Ga-Doped Zinc Oxide Thin Films. Applied Surface Science, 258, 9969-9976.
https://doi.org/10.1016/j.apsusc.2012.06.058
[28]
Muiva, C.M., Sathiaraj, T.S. and Maabong, K. (2011) Effect of Doping Concentration on the Properties of Aluminium Doped Zinc Oxide Thin Films Prepared by Spray Pyrolysis for Transparent Electrode Applications. Ceramics International, 37, 555-560. https://doi.org/10.1016/j.ceramint.2010.09.042
[29]
Hossain, M.F., Zhang, Z.H. and Takahashi, T. (2010) Novel Micro-Ring Structured ZnO Photoelectrode for Dye-Sensitized Solar Cell. Nano-Micro Letters, 2, 53-55.
https://doi.org/10.1007/BF03353618
[30]
Piccinno, F., Gottschalk, F., Seeger, S. and Nowack, B. (2012) Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. Journal of Nanoparticle Research, 14, 1109-1120.
https://doi.org/10.1007/s11051-012-1109-9
[31]
Wu, M., Yu, S., Chen, G., He, L., Yang, L. and Zhang, W. (2015) Structural, Optical, and Electrical Properties of Mo-Doped ZnO Thin Films Prepared by Magnetron Sputtering. Applied Surface Science, 324, 791-796.
https://doi.org/10.1016/j.apsusc.2014.11.039
[32]
Chen, S., Warwick, M.E.A. and Binions, R. (2015) Effects of Film Thickness and Thermal Treatment on the Structural and Opto-Electronic Properties of Ga-Doped ZnO Films Deposited by Sol-Gel Method. Solar Energy Materials and Solar Cells, 137, 202-209. https://doi.org/10.1016/j.solmat.2015.02.016
[33]
Karamat, S., Rawat, R.S., Lee, P., Tan, T.L. and Ramanujan, R.V. (2014) Structural, Elemental, Optical and Magnetic Study of Fe Doped ZnO and Impurity Phase Formation. Progress in Natural Science, Materials International, 24, 142-149.
https://doi.org/10.1016/j.pnsc.2014.03.009
[34]
Mizushima, T., Fukushima, K., Ohkita, H. and Kakuta, N. (2007) Synthesis of β-MoO3 through Evaporation of HNO3-Added Molybdic Acid Solution and Its Catalytic Performance in Partial Oxidation of Methanol. Applied Catalysis A: General, 326, 106-112. https://doi.org/10.1016/j.apcata.2007.04.006
[35]
Venkatachalam, N., Palanichany, M., Banumathi, A. and Murugesan, V. (2007) Enhanced Photocatalytic Degradation of 4-Chlorophrnol by Zr4+ Doped Nano TiO2. Journal of Molecular Catalysis A: Chemical, 266, 158-165.
https://doi.org/10.1016/j.molcata.2006.10.051
[36]
Song, J., Ni, X., Gao, L. and Zheng, H. (2007) Synthesis of Metastable h-MoO3 by Simple Chemical Precipitation. Materials Chemistry and Physics, 102, 245-248.
https://doi.org/10.1016/j.matchemphys.2006.12.011
[37]
He, T. and Yao, J. (2003) Photochromism of Molybdenum Oxide. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 125-143.
https://doi.org/10.1016/S1389-5567(03)00025-X
[38]
Dipanjan, M., Karmakar, K. and Mandal, K. (2019) N-N Type Core-Shell Heterojunction Engineering with MoO3 over ZnO Nanorod Cores for Enhanced Solar Energy Harvesting Application in a Photoelectrochemical Cell. Journal of Alloys and Compounds, 791, 739-746. https://doi.org/10.1016/j.jallcom.2019.03.292
[39]
Bellal, B., Saadi, S., Koriche, N., Bouguelia, A. and Trari, M. (2009) Physical Properties of the Delafossite LaCuO2. Journal of Physics and Chemistry of Solids, 70, 1132-1136. https://doi.org/10.1016/j.jpcs.2009.06.011