We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10?9 and a dynamic locking accuracy of about 5 × 10?8 are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on.
Kippenberg, T.J., Holzwarth, R. and Diddams, S.A. (2011) Microresonator-Based Optical Frequency Combs. Science, 332, 555-559.
https://doi.org/10.1126/science.1193968
[3]
Tien, M.C. Mizumoto, T., Pintus, P., Kromer, H. and Bowers, J.E. (2011) Silicon ring Isolators with Bonded Nonreciprocal Magneto-Optic Garnets. Opt. Express, 19, 11740-11745. https://doi.org/10.1364/OE.19.011740
[4]
Wang, J., Feng, L., Wang, Q., Wang, X. and Jiao, H. (2016) Reduction of Angle Random Walk by In-Phase Triangular Phase Modulation Technique for Resonator Integrated Optic Gyro. Opt. Express, 24, 5463-5468.
https://doi.org/10.1364/OE.19.011740
[5]
Zhang, J., Ma, H., Li, H. and Jin, Z. (2017) Single-Polarization Fiber-Pigtailed High-Finesse Silica Waveguide Ring Resonator for a Resonant Micro-Optic Gyroscope. Opt. Lett., 42, 3658-3661. https://doi.org/10.1364/OL.42.003658
[6]
Feng, L., Wang, J., Zhi, Y., Tang, Y., Wang, Q., Li, H. and Wang, W. (2014) Transmissive Resonator Optic Gyro Based on Silica Waveguide Ring Resonator. Opt. Express, 22, 27565–27575. https://doi.org/10.1364/OE.22.027565
[7]
Locke, C.R., Stuart, D., Ivanov, E.N. and Luiten, A.N. (2009) A Simple Technique for Accurate and Complete Characterisation of a Fabry-Perot Cavity. Opt. Express, 17, 21935-21943. https://doi.org/10.1364/OE.17.021935
[8]
Yeh, Y., Park, D. and Park, S.H. (2009) High-Speed Measurement of Free Spectral Range Voltage of Tunable Filters. Opt. Lett., 34, 52-54.
https://doi.org/10.1364/OL.34.000052
[9]
Gee, S., Ozharar, S., Quinlan, F. and Delfyett, P.J. (2006) High-Precision Measurement of Free Spectral Range of Etalon. Electron. Lett., 42, 715-716.
https://doi.org/10.1049/el:20060652
[10]
Thorpe, M., Jones, R., Moll, K., Ye, J. and Lalezari, R. (2005) Precise measurements of Optical Cavity Dispersion and Mirror Coating Properties via Femtosecond Combs. Opt. Express, 13, 882-888. https://doi.org/10.1364/OPEX.13.000882
[11]
Schliesser, A., Gohle, C., Udem, T. and Hänsch, T.W. (2006) Complete Characterization of a Broadband High-Finesse Cavity Using an Optical Frequency Comb. Opt. Express, 14, 5975-5983. https://doi.org/10.1364/OE.14.005975
[12]
Coddington, I., Swann, W.C. and Newbury, N.R. (2008) Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs. Phys. Rev. Lett., 100, Article ID: 013902. https://doi.org/10.1103/PhysRevLett.100.013902
[13]
Pupeza, I., Gu, X., Fill, E., Eidam, T., Limpert, J., Tünnermann, A., Krausz, F. and Udem, T. (2010) Highly Sensitive Dispersion Measurement of a High-Power Passive Optical Resonator Using Spatial-Spectral Interferometry. Opt. Express, 18, 26184-26195. https://doi.org/10.1364/OE.18.026184
[14]
Del’Haye, P., Arcizet, O., Gorodetsky, M.L., Holzwarth, R. and Kippenberg, T.J. (2009) Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion. Nat. Photonics, 3, 529-533.
https://doi.org/10.1038/nphoton.2009.138
[15]
Mandridis, D., Ozdur, I., Bagnell, M. and Delfyett, P.J. (2010) Free Spectral Range Measurement of a Fiberized Fabry-Perot Etalon with Sub-Hz Accuracy. Opt. Express, 18, 11264-11269. https://doi.org/10.1364/OE.18.011264
[16]
Wang, X., Feng, L.S., Zhou, Z., Li, H., Liu, D.N., Wang, Q.W., Liu, L.Y., Jia, Y.Z., Jiao, H.C. and Liu, N. (2018) Real-Time Free Spectral Range Measurement Based on Optical Single-Sideband Technique. Opt. Express, 26, 7494-7506.
https://doi.org/10.1364/OE.26.007494
[17]
Gliese, U., Christensen, E.L. and Stubkjaer, K.E. (1991) Laser Linewidth Requirements and Improvements for Coherent Optical Beam Forming Networks in Satellites. IEEE J. Lightwave. Technol., 9, 779-790. https://doi.org/10.1109/50.81982
[18]
Wu, J., Smiciklas, M., Strandjord, L.K., Qiu, T., Ho, W. and Sanders, G.A. (2015) Resonator Fiber Optic Gyro with High Backscatter-Error Suppression Using Two Independent Phase-Locked Lasers. Proc. SPIE, 9634, 963410.
https://doi.org/10.1117/12.2195220
[19]
Jiao, H., Feng, L., Wang, K., Liu, N. and Yang, Z. (2017) Analysis of Polarization Noise in Transmissive Single-Beam-Splitter Resonator Optic Gyro Based on Hollow-Core Photonic-Crystal Fiber. Opt. Express, 25, 27806-27817.
https://doi.org/10.1364/OE.25.027806
[20]
Ramos, R.T. and Seeds, A.J. (1990) Delay, Linewidth and Bandwidth Limitations in Optical Phase-Locked Loop Design. IEEE Electronics Letters, 26, 389-391.
https://doi.org/10.1049/el:19900254