全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Psychology  2021 

On the Application of Bootstrapping and Monte Carlo Simulations to Clinical Studies: Psychometric Intelligence Research and Juvenile Delinquency

DOI: 10.4236/psych.2021.128072, PP. 1171-1183

Keywords: Bootstrapping, Monte Carlo Simulation, Juvenile Delinquency, Intelligence Testing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The common problems in the methodology of clinical psychology research are sampling issues, both in the case of biased clinical groups and inappropriate control groups. This study aimed to mitigate this problem by using the following procedures: 1) using a bootstrapping approach for the biased clinical sample; 2) generating a random number dataset as a control population; 3) resampling both the bootstrapped targeted datasets and the normed control population; and 4) conducting a repeated analysis to create averaged statistics using the Monte Carlo simulation. The dataset used in the present study included 273 children with a history of delinquency and was assessed using the WISC-IV. Compared with conventional analyses, the proposed approach in the present study was found to generate the characteristics of the targeted clinical group on the basis of averaged statistics. Given that the norm had been identified in past research on psychometric intelligence, the use of bootstrapping and Monte Carlo simulations led to more robust findings compared with the use of conventional clinical studies.

References

[1]  Alfaro, M. E., Zoller, S., & Lutzoni, F. (2003). Bayes or Bootstrap? A Simulation Study Comparing the Performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in Assessing Phylogenetic Confidence. Molecular Biology and Evolution, 20, 255-266. https://doi.org/10.1093/molbev/msg028
[2]  Andrew, J. M. (1977). Delinquency: Intellectual Imbalance? Correctional Psychologist, 4, 99-104. https://doi.org/10.1177%2F009385487700400108
[3]  Bray, J. H., & Maxwell, S. E. (1982). Analyzing and Interpreting Significant MANOVAs. Review of Educational Research, 52, 340-367.
https://doi.org/10.3102/00346543052003340
[4]  Carpenter, J., & Bithell, J. (2000). Bootstrap Confidence Intervals: When, Which, What? A Practical Guide for Medical Statisticians. Statistics in Medicine, 19, 1141-1164.
https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9%3C1141::AID-SIM479%3E3.0.CO;2-F
[5]  Davidson, R., & MacKinnon, J. G. (2000). Bootstrap Tests: How Many Bootstraps? Econometric Reviews, 19, 55-68. https://doi.org/10.1080/07474930008800459
[6]  Del Moral, P., Doucet, A., & Jasra, A. (2012). On Adaptive Resampling Strategies for Sequential Monte Carlo Methods. Bernoulli, 18, 252-278.
https://doi.org/10.3150/10-BEJ335
[7]  Deng, L. Y., & Lin, D. K. (2000). Random Number Generation for the New Century. The American Statistician, 54, 145-150. https://doi.org/10.1080/00031305.2000.10474528
[8]  Doubilet, P., Begg, C. B., Weinstein, M. C., Braun, P., & McNeil, B. J. (1985). Probabilistic Sensitivity Analysis Using Monte Carlo Simulation: A Practical Approach. Medical Decision Making, 5, 157-177. https://doi.org/10.1177/0272989X8500500205
[9]  Drabick, D. A., & Goldfried, M. R. (2000). Training the Scientist-Practitioner for the 21st Century: Putting the Bloom Back on the Rose. Journal of Clinical Psychology, 56, 327-340.
https://doi.org/10.1002/(SICI)1097-4679(200003)56:3%3C327::AID-JCLP9%3E3.0.CO;2-Y
[10]  Efron, B., & Tibshirani, R. (1986). Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science, 1, 77.
https://doi.org/10.1214/ss/1177013817
[11]  Enders, C. K. (2003). Performing Multivariate Group Comparisons Following a Statistically Significant MANOVA. (Methods, Plainly Speaking). Measurement and Evaluation in Counseling and Development, 36, 40-56.
https://doi.org/10.1080/07481756.2003.12069079
[12]  Hall, P., & Martin, M. A. (1988). On Bootstrap Resampling and Iteration. Biometrika, 75, 661-671. https://doi.org/10.1093/biomet/75.4.661
[13]  Isen, J. (2010). A Meta-Analytic Assessment of Wechsler’s P>V Sign in Antisocial Populations. Clinical Psychology Review, 30, 423-435.
https://doi.org/10.1016/j.cpr.2010.02.003
[14]  McGloin, J. M., Pratt, T. C., & Maahs, J. (2004). Rethinking the IQ-Delinquency Relationship: A Longitudinal Analysis of Multiple Theoretical Models. Justice Quarterly, 21, 603-635. https://doi.org/10.1080/07418820400095921
[15]  Moffitt, T. E., & Silva, P. A. (1988). IQ and Delinquency: A Direct Test of the Differential Detection Hypothesis. Journal of Abnormal Psychology, 97, 330-333.
https://doi.org/10.1037/0021-843X.97.3.330
[16]  Norcross, J. C., Gallagher, K. M., & Prochaska, J. O. (1989). The Boulder and/or the Vail Model: Training Preferences of Clinical Psychologists. Journal of Clinical Psychology, 45, 822-828.
https://doi.org/10.1002/1097-4679(198909)45:5%3C822::AID-JCLP2270450521%3E3.0.CO;2-E
[17]  Numerical Technologies (2017, October 19). NTRAND 3.3: An Excel Add-In Random Generator Powered by Mersenne Twister Algorithm. Word Press.
http://www.ntrand.com/
[18]  O’Sullivan, J. J., & Quevillon, R. P. (1992). 40 Years Later: Is the Boulder Model Still Alive? American Psychologist, 47, 67-70. https://doi.org/10.1037/0003-066X.47.1.67
[19]  Rasmussen, J. L. (1989). Computer-Intensive Correlational Analysis: Bootstrap and Approximate Randomization Techniques. British Journal of Mathematical and Statistical Psychology, 42, 103-111. https://doi.org/10.1111/j.2044-8317.1989.tb01118.x
[20]  Sitter, R. R. (1992). A Resampling Procedure for Complex Survey Data. Journal of the American Statistical Association, 87, 755-765.
https://doi.org/10.1080/01621459.1992.10475277
[21]  Smith, A. F., & Gelfand, A. E. (1992). Bayesian Statistics without Tears: A Sampling-Resampling Perspective. The American Statistician, 46, 84-88.
https://doi.org/10.1080/00031305.1992.10475856
[22]  Warne, R. T. (2014). A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists. Practical Assessment, Research & Evaluation, 19, Article No. 17.
http://pareonline.net/getvn.asp?v=19&n=17
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1329&context=pare
[23]  Wechsler, D. (2010). Technical and Interpretive Manual for the Wechsler Intelligence Scale for Children (4th ed.). K. Ueno, K. Fujita, H. Maekawa, T. Ishikuma, H. Dairoku, & O. Matsuda, Trans., Nihon Bunka Kagakusha.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133