全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Unification of Gravitational and Electromagnetic Fields in Curved Space-Time Using Gauge Symmetry of Bianchi Identities

DOI: 10.4236/jhepgc.2021.73071, PP. 1202-1212

Keywords: Bianchi Identity, Killing’s Equation, Maxwell’s Equation, Gravity, Kaluza-Klein Theory, Unification, Gauge Symmetry, Relativity

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klein theory’s unification of the gravitational and electromagnetic fields. The unification of gravitational and electromagnetic fields in curved space-time starts from the Bianchi identity, which is well known as a mathematical generalization of the gravitational equation, and by using the existing gauge symmetry condition, equations for the gravitational and electromagnetic fields can be obtained. In particular, the homogeneous Maxwell’s equation can be obtained from the first Bianchi identity, and the inhomogeneous Maxwell’s equation can be obtained from the second Bianchi identity by using Killing’s equation condition of the curved space-time. This paper demonstrates that gravitational and electromagnetic fields can be derived from one equation without contradiction even in curved space-time, thus proving that the 4-dimensional metric tensor using the gauge used for this unification is more complete. In addition, geodesic equations can also be derived in the form of coordinate transformation, showing that they are consistent with the existing equations, and as a result, they are consistent with the existing physical equations.

References

[1]  Weyl, H. (1929) Elektron und Gravitation I. Zeitschrift für Physik, 56, 330-352.
https://doi.org/10.1007/BF01339504
[2]  Theodor, K. (1921). Zum Unitätsproblem in der Physik. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Proceedings of the Prussian Academy of Sciences, Berlin, 1918, 966-972.
[3]  Oskar, K. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37, 895-906.
https://doi.org/10.1007/BF01397481
[4]  Yun, Y., Jang, K. and Sung, Y. (2021) Unification of Gravitational and Electromagnetic Fields Using Gauge Symmetry. Journal of High Energy Physics, Gravitation and Cosmology, 7, 344-351.
[5]  Red’kov, V.M., Tokarevskaya, N.G., Bychkouskaya, E.M. and Spix, G.J. (2007) Maxwell Equations in Riemannian Space-Time, Geometrical Modeling of Medias. Nonlinear Dynamics and Applications, 14, 126-139.
[6]  Ohanian, H. and Ruffini, R. (1994) Gravitation and Spacetime. Second Edition, W.W. Norton & Company, New York, 334-335+352-354+316.
[7]  Bertschinger, E. (2002) Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance. Physics 8.962, Massachusetts Institute of Technology Department of Physics, Cambridge, USA.
[8]  Ronald, A., Maurice, B. and Menahem, S. (1975) Introduction to General Relativity. Second Edition, McGraw-Hill, New York.
[9]  Lee, G.S. (2019) Aha! General Theory of Relativity. YESM Publishing Co. Ltd., Seoul, 74-76.
[10]  El-Salam, F.A.A. (2013) Fractional Approach of Maxwell Equations in the Curved Spacetime. Journla of Taibah University for Science, 7, 173-179.
https://doi.org/10.1016/j.jtusci.2013.04.005
[11]  Luigi, B. (1902) Sui simboli a quattro indici e sulla curvatura di Riemann. Rendiconti Accademia Nazionaledei Lincei, 11, 3-7
[12]  Straub, W.O. (2008) Kaluza Klein Theory. Pasadena, California.
http://www.physicsforums.com/attachments/kaluza-klein-straub-pdf.55316/
[13]  Ekspong, G. (1991) The Oskar Klein Memorial Lectures Vol. 1: Lectures by C.N. Yang and S. Weinberg. World Scientific Publishing Co. Pte. Ltd., Singapore.
https://doi.org/10.1142/1157
[14]  Založnik, A. (2012) Kaluza-Klein Theory. Thesis, University of Ljubljana, Ljubljana, Slovenia.
http://reprints.gravitywaves.com/Kaluza-Klein/Zaloznik-2012-Hamber_KaluzaKleinTheory_LjubljanaSeminar4.pdf
[15]  Klein, Oskar (1926) The Atomicity of Electricity as a Quantum Theory Law. Nature, 118, 516 p.
https://doi.org/10.1038/118516a0
[16]  Greene, B. (2003) The Elegant Universe. Second Edition, Vintage Books, New York, 197 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133