全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fully Polarimetric Land Cover Classification Based on Markov Chains

DOI: 10.4236/ars.2021.103003, PP. 47-65

Keywords: Fully Polarimetric SAR, Coherent Decomposition, Elementary Scatterers, Markov Chains, Land Cover Classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel land cover classification procedure is presented utilizing the information content of fully polarimetric SAR images. The Cameron coherent target decomposition (CTD) is employed to characterize land cover pixel by pixel. Cameron’s CTD is employed since it provides a complete set of elementary scattering mechanisms to describe the physical properties of the scatterer. The novelty of the proposed land classification approach lies on the fact that the features used for classification are not the types of the elementary scatterers themselves, but the way these types of scatterers alternate from pixel to pixel on the SAR image. Thus, transition matrices that represent local Markov models are used as classification features for land cover classification. The classification rule employs only the most important transitions for decision making. The Frobenius inner product is employed as similarity measure. Ten different types of land cover are used for testing the proposed method. In this aspect, the classification performance is significantly high.

References

[1]  Tong, X.Y., Shen, H., Li, S., You, S., Zhang, L., et al. (2020) Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sensing of Environment, 237, Article ID: 111322.
https://doi.org/10.1016/j.rse.2019.111322
[2]  Tsagaris, V., Anastassopoulos, V. and Lampropoulos, G.A. (2005) Fusion of Hyperspectral Data Using Segmented PCT for Color Representation and Classification. IEEE Transactions on Geoscience and Remote Sensing, 43, 2365-2375.
https://doi.org/10.1109/TGRS.2005.856104
[3]  Kreithen, D.E., Halversen, S.S. and Owirka, G.J. (1993) Discriminating Targets from Clutter. Lincoln Laboratory Journal, 6, 25-52.
[4]  Chaney, R.D., Burl, M.C. and Novak, L.M. (1990) On the Performance of Polarimetric Target Detection Algorithms. IEEE International Radar Conference, Arlington, 7-10 May 1990, 520-525.
[5]  Pottier, E. and Saillard, J. (1990) Optimal Polarimetric Detection of Radar Target in a Slowly Fluctuating Environment of Clutter. IEEE International Radar Conference, Arlington, 7-10 May 1990, 211-216.
https://doi.org/10.1109/RADAR.1990.201164
[6]  Novak, L.M., Burl, M.C., Chaney, R.D. and Owirka, G.J. (1990) Optimal Processing of Polarimetric Synthetic-Aperture Radar Imagery. Lincoln Laboratory Journal, 3, 273-290.
[7]  Gu, D. and Xu, X. (2013) Multi-Feature Extraction of Ships from SAR Images. 6th International Congress Image and Signal Processing (CISP), Vol. 1, 454-458.
https://doi.org/10.1109/CISP.2013.6744037
[8]  Anastassopoulos, V., Lampropoulos, G.A., Drosopoulos, A. and Rey, M. (1999) High Resolution Radar Clutter Statistics. IEEE Transactions on Aerospace and Electronic Systems, 35, 43-60.
https://doi.org/10.1109/7.745679
[9]  Anastassopoulos, V. and Lampropoulos, G.A. (1995) Optimal CFAR Detection in Weibull Clutter. IEEE Transactions on Aerospace and Electronic Systems, 31, 52-64.
https://doi.org/10.1109/7.366292
[10]  Lampropoulos, G.A., Anastassopoulos, V. and Boulter, J.F. (1998) Constant False Alarm Rate Detection of Point Targets Using Distributed Sensors. Optical Engineering, 37, 401-416.
https://doi.org/10.1117/1.601626
[11]  Anastassopoulos, V. and Lampropoulos, G.A. (1992) A New and Robust CFAR Detection Algorithm. IEEE Transactions on Aerospace and Electronic Systems, 28, 420-427.
https://doi.org/10.1109/7.144568
[12]  Fei, C., Liu, T., Lampropoulos, G.A. and Anastassopoulos, V. (2012) Markov Chain CFAR Detection for Polarimetric Data Using Data Fusion. IEEE Transactions on Geoscience and Remote Sensing, 50, 397-408.
https://doi.org/10.1109/TGRS.2011.2164257
[13]  Lee, J.S. and Pottier, E. (2009) Polarimetric Radar Radar Imaging. CRC Press, New York.
[14]  Nunziata, F., Migliaccio, M. and Brown, C.E. (2012) Reflection Symmetry for Polarimetric Observation of Man-Made Metallic Targets at Sea. IEEE Journal of Oceanic Engineering, 37, 384-394.
https://doi.org/10.1109/JOE.2012.2198931
[15]  Addabbo, P., Biondi, F., Clemente, C., Orlando, D. and Pallotta, L. (2019) Classification of Covariance Matrix Eigenvalues in Polarimetric SAR for Environmental Monitoring Applications. IEEE Transactions on Aerospace and Electronic Systems Magazine, 34, 28-43.
https://doi.org/10.1109/MAES.2019.2905924
[16]  Pallotta, L., Clemente, C., De Maio, A. and Soraghan, J.J. (2017) Detecting Covariance Symmetries in Polarimetric SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 55, 80-95.
https://doi.org/10.1109/TGRS.2016.2595626
[17]  Van Zyl, J.J., Arii, M. and Kim, Y. (2011) Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues. IEEE Transactions on Geoscience and Remote Sensing, 49, 3452-3459.
https://doi.org/10.1109/TGRS.2011.2128325
[18]  Touzi, R., Charbonneau, F., Hawkins, R., Murnaghan, K. and Kavoun, X. (2001) Ship-Sea Contrast Optimization When Using Polarimetric SARs. Geoscience and Remote Sensing Symposium, Vol. 1, 426-428.
https://doi.org/10.4095/219781
[19]  Touzi, R., Charbonneau, F., Hawkins, R. and Vachon, P. (2004) Ship Detection and Characterization Using Polarimetric SAR. Canadian Journal of Remote Sensing, 30, 552-559.
https://doi.org/10.5589/m04-002
[20]  Ringrose, R. and Harris, N. (1999) Ship Detection Using Polarimetric SAR Data. SAR Workshop: CEOS Committee on Earth Observation Satellites, Toulouse, 26-29 October 1999, 687-691.
[21]  Cameron, W.L., Youssef, N.N. and Leung, L.K. (1996) Simulated Polarimetric Signatures of Primitive Geometrical Shapes. IEEE Transactions on Geoscience and Remote Sensing, 34, 793-803.
https://doi.org/10.1109/36.499784
[22]  Kouroupis, G. and Anastassopoulos, V. (2019) Scatterer Characterization Based on the Condiagonalization of the Sinclair Backscattering Matrix. Progress in Electromagnetics Research M, 85, 59-69.
https://doi.org/10.2528/PIERM19010902
[23]  Kouroupis, G. and Anastassopoulos, V. (2019) A Polarimetric CFAR Ship Detector Based on the Joint Probability Function of Simulated First-Order Markov Chains. International Journal of Remote Sensing, 40, 5121-5140.
https://doi.org/10.1080/01431161.2019.1579379
[24]  Therrien, C.W. (1992) Random Processes. Prentice Hall, Englewood Cliffs.
[25]  Kouroupis, G. and Anastassopoulos, V. (2016) A Markov Chain Model Based on Cameron’s CTD Ship Detection Scheme. IEEE Imaging Systems and Techniques, Chania, 4-6 October 2016, 100-105.
https://doi.org/10.1109/IST.2016.7738205
[26]  SNAP Toolboxes. Science Toolbox Exploitation Platform.
http://step.esa.int/main/toolboxes/snap
[27]  Cameron, W.L. and Rais, H. (2006) Conservative Polarimetric Scatters and Their Role in Incorrect Extensions of the Cameron Decomposition. IEEE Transactions on Geoscience and Remote Sensing, 44, 3506-3516.
https://doi.org/10.1109/TGRS.2006.879115
[28]  Sarker, S., Veremyev, A., Boginski, V. and Arvind Singh, A. (2019) Critical Nodes in River Networks. Scientific Reports, 9, Article No. 11178.
https://doi.org/10.1038/s41598-019-47292-4
[29]  MDA, RADARSAT-2 Product Description, RN-SP-52-1238 Issue 1/14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133