全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fabrication and Characterization of Chitosan Based Injectable Thermosensitive Hydrogels Containing Silica/Calcium Phosphate Nanocomposite Particles

DOI: 10.4236/jbnb.2021.123004, PP. 34-48

Keywords: Thermosensitivity, Composite Hydrogel, Bioactive Particles, Rheology, Biocompatibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the effect of silica/calcium phosphate (SiCaP) nanocomposite particles on the properties of a novel chitosan-based thermosensitive hydrogel system was examined. SiCaP nanocomposite powder was fabricated using a sol-gel method and then used to fabricate nanocomposite hydrogels (Ch- β/7.5SiCaP and Ch-β/15SiCaP) including chitosan and β-glycerophosphate (Ch-β) as a matrix. Results revealed that compared to the Ch-β hydrogel without SiCaP, the presence of SiCaP particles in nanocomposite hydrogels maintained pH stability during the sol-gel transition, accelerated the gelation and improved the stiffness of nanocomposite hydrogels. Gelation time at 37℃ was reduced approximately 75% and stiffness was increased approximately 115%. Both of these changes are attributed to chemical and physical interactions of the SiCaP bioactive particles with chitosan. Furthermore, compared to the Ch-β hydrogel, the presence of SiCaP in the Ch-β/7.5SiCaP nanocomposite hydrogel did not affect biocompatibility negatively, but improved osteoblastic cell differentiation. Our studies suggest that these nanocomposite hydrogels may offer an innovative approach to bone regeneration strategies.

References

[1]  Supper, S., Anton, N., Seidel, N., Riemenschnitter, M., Curdy, C. and Vandamme, T. (2014) Thermosensitive Chitosan/Glycerophosphate Based Hydrogel and Its Derivatives in Pharmaceutical and Biomedical Applications. Expert Opinion on Drug Delivery, 11, 249-267.
https://doi.org/10.1517/17425247.2014.867326
[2]  Ahmadi, R. and Bruijn, J.D.D. (2008) Biocompatibility and Gelation of Chitosan-Glycerol Phosphate Hydrogels. Journal of Biomedical Materials Research Part A, 86, 824-832.
https://doi.org/10.1002/jbm.a.31676
[3]  Chenite, A., Buschmann, M., Wang, D., Chaput, C. and Kandani, N. (2001) Rheological Characterization of Thermogelling Chitosan/Glycerol-Phosphate Solutions. Carbohydrate Polymers, 46, 39-47.
https://doi.org/10.1016/S0144-8617(00)00281-2
[4]  Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M.D., Hoemann, C.D., Leroux, J.C., Atkinson, B.L., Binette, F. and Selmani, A. (2000) Novel Injectable Neutral Solutions of Chitosan form Biodegradable Gels in Situ. Biomaterials, 21, 2155-2161.
https://doi.org/10.1016/S0142-9612(00)00116-2
[5]  Zhou, H.Y., Jiang, L.J., Cao, P.P., Li, J.B. and Chen, X.G. (2015) Glycerophosphate-Based Chitosan Thermosensitive Hydrogels and Their Biomedical Applications. Carbohydrate Polymers, 117, 524-536.
https://doi.org/10.1016/j.carbpol.2014.09.094
[6]  Ganji, F., Abdekhodaie, M.J. and Ramazani, S.A. (2007) Gelation Time and Degradation Rate of Chitosan-Based Injectable Hydrogel. Journal of Sol-Gel Science and Technology, 42, 47-53.
https://doi.org/10.1007/s10971-006-9007-1
[7]  Latifi, S.M., Fathi, M.H., Sharifnabi, A. and Varshosaz, J. (2017) In Vitro Characterization of a Sol-Gel Derived in Situ Silica-Coated Silicate and Carbonate Co-Doped Hydroxyapatite Nanopowder for Bone Grafting. Materials Science and Engineering: C, 75, 272-278.
https://doi.org/10.1016/j.msec.2017.02.078
[8]  Latifi, S.M., Fathi, M.H., Varshosaz, J. and Ghochaghi, N. (2016) Simultaneous Structural and Surface Modifications of Nanophase Hydroxyapatite FOR Improving Its Dissolution and Bioactivity. Ceramics International, 42, 6355-6359.
https://doi.org/10.1016/j.ceramint.2016.01.029
[9]  Zheng, C.Y., Li, S.J., Tao, X.J., Hao, Y.L., Yang, R. and Zhang, L. (2007) Calcium Phosphate Coating of Ti-Nb-Zr-Sn Titanium Alloy. Materials Science and Engineering: C, 27, 824-831.
https://doi.org/10.1016/j.msec.2006.09.021
[10]  Gledhill, H.C., Turner, I.G. and Doyle, C. (2001) In Vitro Dissolution Behaviour of Two Morphologically Different Thermally Sprayed Hydroxyapatite Coatings. Biomaterials, 22, 695-700.
https://doi.org/10.1016/S0142-9612(00)00232-5
[11]  Borum-Nicholas, L. and Wilson Jr., O.C. (2003) Surface Modification of Hydroxyapatite. Part I. Dodecyl Alcohol. Biomaterials, 24, 3671-3679.
https://doi.org/10.1016/S0142-9612(03)00239-4
[12]  Latifi, S.M., Fathi, M.H. and Golozar, H.A. (2011) Preparation and Characterization of Bioactive Hydroxyapatite-Silica Composite Nanopowders via Sol-Gel Method for Medical Applications. Advances in Applied Ceramics, 110, 8-14.
https://doi.org/10.1179/174367510X12753884125325
[13]  Wan, Y., Creber, K.A.M., Peppley, B. and Bui, V.T. (2003) Ionic Conductivity of Chitosan Membranes. Polymer, 44, 1057-1065.
https://doi.org/10.1016/S0032-3861(02)00881-9
[14]  Ta, H.T., Dass, C.R., Larson, I., Choong, P.F.M. and Dunstan, D.E. (2009) A Chitosan-Dipotassium Orthophosphate Hydrogel for the Delivery of Doxorubicin in the Treatment of Osteosarcoma. Biomaterials, 30, 3605-3613.
https://doi.org/10.1016/j.biomaterials.2009.03.022
[15]  Kloxin, A.M., Benton, J.A. and Anseth, K.S. (2010) In Situ Elasticity Modulation with Dynamic Substrates to Direct Cell Phenotype. Biomaterials, 31, 1-8.
https://doi.org/10.1016/j.biomaterials.2009.09.025
[16]  Mabry, K.M., Lawrence, R.L. and Anseth, K.S. (2015) Dynamic Stiffening of Poly(ethylene glycol)-Based Hydrogels to Direct Valvular Interstitial Cell Phenotype in a Three-Dimensional Environment. Biomaterials, 49, 47-56.
https://doi.org/10.1016/j.biomaterials.2015.01.047
[17]  Dang, Q.F., Yan, J.Q, Lin, H., Chen, X.G., Liu, C.S., Ji, Q.X. and Li, J.J. (2012) Design and Evaluation of a Highly Porous Thermosensitive Hydrogel with Low Gelation Temperature as a 3D Culture System for Penaeus chinensis Lymphoid Cells. Carbohydrate Polymers, 88, 361-368.
https://doi.org/10.1016/j.carbpol.2011.12.014
[18]  Balasundaram, G., Sato, M. and Webster, T.J. (2006) Using Hydroxyapatite Nanoparticles and Decreased Crystallinity to Promote Osteoblast Adhesion Similar to Functionalizing with RGD. Biomaterials, 27, 2798-2805.
https://doi.org/10.1016/j.biomaterials.2005.12.008
[19]  Khan, T.A., Peh, K.K. and Chng, H.S. (2002) Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. Journal of Pharmacy & Pharmaceutical Sciences, 5, 205-212.
[20]  Queiroz, M.F., Melo, K.R.T., Sabry, D.A., Sassaki, G.L. and Rocha, H.A.O. (2015) Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Marine Drugs, 13, 141-158.
https://doi.org/10.3390/md13010141
[21]  Song, C., Yu, H., Zhang, M., Yang, Y. and Zhang, G. (2013) Physicochemical Properties and Antioxidant Activity of Chitosan from the Blowfly Chrysomya megacephala Larvae. International Journal of Biological Macromolecules, 60, 347-354.
https://doi.org/10.1016/j.ijbiomac.2013.05.039
[22]  Dash, M., Chiellini, F., Ottenbrite, R.M. and Chiellini, E. (2011) Chitosan-A Versatile Semi-Synthetic Polymer in Biomedical Applications. Progress in Polymer Science, 36, 981-1014.
https://doi.org/10.1016/j.progpolymsci.2011.02.001
[23]  Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A. and Gurny, R. (2004) Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 19-34.
https://doi.org/10.1016/S0939-6411(03)00161-9
[24]  Dang, Q., Liu, K., Zhang, Z., Liu, C., Liu, X., Xin, Y., Cheng, X., Xu, T., Cha, D. and Fan, B. (2017) Fabrication and Evaluation of Thermosensitive Chitosan/Collagen/β- Glycerophosphate Hydrogels for Tissue Regeneration. Carbohydrate Polymers, 167, 145-157.
https://doi.org/10.1016/j.carbpol.2017.03.053
[25]  Cho, J., Heuzey, M.C., Begin, A., Pierre, J. and Carreau, P.J. (2006) Chitosan and Glycerophosphate Concentration Dependence of Solution Behaviour and Gel Point Using Small Amplitude Oscillatory Rheometry. Food Hydrocolloids, 20, 936-945.
https://doi.org/10.1016/j.foodhyd.2005.10.015
[26]  Ngoenkam, J., Faikrua, A., Yasothornsrikul, S. and Viyoch, J. (2010) Potential of an Injectable Chitosan/Starch/β-Glycerol Phosphate Hydrogel for Sustaining Normal Chondrocyte Function. International Journal of Pharmaceutics, 391, 115-124.
https://doi.org/10.1016/j.ijpharm.2010.02.028
[27]  Wang, L. and Stegemann, J.P. (2010) Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with β-Glycerophosphate for Bone Tissue Engineering. Biomaterials, 31, 3976-3985.
https://doi.org/10.1016/j.biomaterials.2010.01.131
[28]  Dang, Q.F., Zou, S.H., Chen, X.G., Liu, C.S., Li, J.J., Zhou, X., Liu, Y. and Cheng, X.J. (2012) Characterizations of Chitosan-Based Highly Porous Hydrogel: The Effects of the Solvent. Journal of Applied Polymer Science, 125, e88-e98.
https://doi.org/10.1002/app.36681
[29]  Jung, G.Y., Park, Y.J. and Han, J.S. (2010) Effects of HA Released Calcium Ion on Osteoblast Differentiation. Journal of Materials Science: Materials in Medicine, 21, 1649-1654.
https://doi.org/10.1007/s10856-010-4011-y
[30]  Ma, S., Yang, Y., Carnes, D.L., Kim, K., Park, S., Oh, S.H. and Ong, J.L. (2005) Effects of Dissolved Calcium and Phosphorous on Osteoblast Responses. Journal of Oral Implantology, 31, 61-67.
https://doi.org/10.1563/0-742.1
[31]  Bernards, M.T., Qin, C., Ratner, B.D. and Jiang, S. (2008) Adhesion of MC3T3-E1 Cells to Bone Sialoprotein and Bone Osteopontin Specifically Bound to Collagen I. Journal of Biomedical Materials Research Part A, 86, 779-787.
https://doi.org/10.1002/jbm.a.31650
[32]  Gupta, G., Kirakodu, S. and El-Ghannam, A. (2010) Effects of Exogenous Phosphorus and Silicon on Osteoblast Differentiation at the Interface with Bioactive Ceramics. Journal of Biomedical Materials Research Part A, 95, 882-890.
https://doi.org/10.1002/jbm.a.32915
[33]  Reffitt, D.M., Ogston, N., Jugdaosingh, R., Cheung, H.F.J., Evans, B.A.J., Thompson, R.P.H., Powel, J.J. and Hampson, G.N. (2003) Orthosilicic Acid Stimulates Collagen Type 1 Synthesis and Osteoblastic Differentiation in Human Osteoblast-Like Cells in Vitro. Bone, 32, 127-135.
https://doi.org/10.1016/S8756-3282(02)00950-X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133