全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Rotating Black Holes, Dark Matter and Dark Energy in a Unifying Theory

DOI: 10.4236/jamp.2021.97107, PP. 1560-1582

Keywords: Black Holes, Dark Matter, Dark Energy, Motion Energy, Accelerating Expansion of the Universe

Full-Text   Cite this paper   Add to My Lib

Abstract:

The theory here developed, makes use of the decomposition of matter (mass) in different spatial frequencies k’s using spatial Fourier transforms, and the posterior use of modified inverse Fourier transforms to construct an accurate description of the classical Newtonian gravitational field. Introducing the concept of quantization of the spatial frequency k, which means allowing only discrete values, such as km, 2km, 3km, leads to the appearance of extra gravitational force regions that occur at distances equally spaced apart in 2π/km. These areas of extra gravitational force decrease inscribed in an inverse of the distance envelope (1/r). The value of 2π/km can be adjusted to be of the order of kiloparsec (kpc), being this way a plausible explanation for the effect of the dark matter since this causes practically flat rotation curves for most of the galaxies. As these regions of extra gravitational force also have adjacent areas of negative values (repulsive gravitational force), it is possible to show that any mass placed in the gravitational field far from the galaxy center will acquire, on average, a null acceleration, thereby remains the “light push,” or in other words, the “mean luminosity density” between galaxies as an explanation for the accelerating expansion of the universe, today being considered mainly due to dark energy. Along with the article, it is showed that the effect of light push is sufficient to explain the expansion of the universe. The present work also explains the nonlinear behavior of gravitational fields near massive objects such as blackholes, not contradicting the theory of general relativity, instead giving a complementary description of how black holes work, even describing the gravitational field internally to it, which is not available in the GR theory.

References

[1]  Einstein, A. (1915) Die feldgleichungen der gravitation. Sitzung der Physikalisch-Mathematischen Klasse, 25, 844-847.
[2]  Brustein, R. and Medved, A.J.M. (2019) Resisting Collapse: How Matter inside a Black Hole Can Withstand Gravity. Physical Review D, 99, Article ID: 064019.
https://doi.org/10.1103/PhysRevD.99.064019
[3]  Baumgarte, T.W., Shapiro, S.L. and Pullin, J. (2011) Numerical Relativity: Solving Einstein’s Equations on the Computer. Physics Today, 64, 49.
[4]  Maccone, L. (2019) A Fundamental Problem in Quantizing General Relativity. Foundations of Physics, 49, 1394-1403.
https://doi.org/10.1007/s10701-019-00311-w
[5]  Bera, R.K. (2020) Waves and Fourier Analyses. In: The Amazing World of Quantum Computing, Springer, Singapore, 99-110.
https://doi.org/10.1007/978-981-15-2471-4_5
[6]  Perlov, D. and Vilenkin, A. (2017) Cosmology for the Curious. Springer, Berlin.
https://doi.org/10.1007/978-3-319-57040-2
[7]  Wang, B., Abdalla, E., Atrio-Barandela, F. and Pavón, D. (2016) Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures. Reports on Progress in Physics, 79, Article ID: 096901.
https://doi.org/10.1088/0034-4885/79/9/096901
[8]  Wilhelm, K. and Dwivedi, B.N. (2020) On the Radial Acceleration of Disc Galaxies. Monthly Notices of the Royal Astronomical Society, 494, 4015-4025.
https://doi.org/10.1093/mnras/staa967
[9]  Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P. and Leibundgut, B.R.U.N.O. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009.
https://doi.org/10.1086/300499
[10]  Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E. and Hook, I.M. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565.
https://doi.org/10.1086/307221
[11]  Schweitz, J.Å. (2020) Expansion of the Universe: Back to Basics.
[12]  Bennett, C.L., Larson, D., Weiland, J.L. and Hinshaw, G. (2014) The 1% Concordance Hubble Constant. The Astrophysical Journal, 794, 135.
https://doi.org/10.1088/0004-637X/794/2/135
[13]  Freedman, W.L., Madore, B.F., Gibson, B.K., Ferrarese, L., Kelson, D.D., Sakai, S., Mould, J.R., Kennicutt Jr., R.C., Ford, H.C., Graham, J.A. and Huchra, J.P. (2001) Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal, 553, 47.
https://doi.org/10.1086/320638
[14]  Estrada, R. (2014) On Radial Functions and Distributions and Their Fourier Transforms. Journal of Fourier Analysis and Applications, 20, 301-320.
https://doi.org/10.1007/s00041-013-9313-2
[15]  Einstein, A. (2019) Relativity: The Special and the General Theory—100th Anniversary Edition. Princeton University Press, Princeton.
https://doi.org/10.2307/j.ctv69tgs1
[16]  Phillips, A.C. (2013) Introduction to Quantum Mechanics. John Wiley & Sons, Hoboken.
[17]  Rindler, W. (2006) Relativity—Special, General, and Cosmological. Oxford University Press, New York.
[18]  Miyamoto, M. and Nagai, R. (1975) Three-Dimensional Models for the Distribution of Mass in Galaxies. Publications of the Astronomical Society of Japan, 27, 533-543.
[19]  Higgins, J.R. (1996) Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press on Demand, Oxford.
[20]  Morison, I. (2013) Introduction to Astronomy and Cosmology. John Wiley & Sons, Hoboken.
[21]  Vavryčuk, V. (2016) Universe Opacity and EBL. Monthly Notices of the Royal Astronomical Society, 465, 1532-1542.
https://doi.org/10.1093/mnras/stw2825
[22]  Blanton, M.R., Dalcanton, J., Eisenstein, D., Loveday, J., Strauss, M.A., SubbaRao, M., Weinberg, D.H., Anderson Jr, J.E., Annis, J., Bahcall, N.A. and Bernardi, M. (2001) The Luminosity Function of Galaxies in SDSS Commissioning Data. The Astronomical Journal, 121, 2358-2380.
https://doi.org/10.1086/320405
[23]  Reynolds, A.P., Parmar, A.N., Hakala, P.J., Pollock, A.M.T., Williams, O.R., Peacock, A. and Taylor, B.G. (1999) The EXOSAT Medium-Energy Slew Survey Catalog. Astronomy and Astrophysics Supplement Series, 134, 287-300.
https://doi.org/10.1051/aas:1999140
[24]  Jaffe, A.H. (2012) Cosmology 2012: Lecture Notes. Imperial College, London.
[25]  White III, R.E., Keel, W.C. and Conselice, C.J. (2000) Seeing Galaxies through Thick and Thin. I. Optical Opacity Measures in Overlapping Galaxies. The Astrophysical Journal, 542, 761-778.
https://doi.org/10.1086/317011
[26]  Calzetti, D. and Heckman, T.M. (1999) The Evolution of Dust Opacity in Galaxies. The Astrophysical Journal, 519, 27.
https://doi.org/10.1086/307338
[27]  Calzetti, D., Armus, L., Bohlin, R.C., Kinney, A.L., Koornneef, J. and Storchi-Bergmann, T. (2000) The Dust Content and Opacity of Actively Star-Forming Galaxies. The Astrophysical Journal, 533, 682-695.
https://doi.org/10.1086/308692
[28]  Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606.
https://doi.org/10.1103/RevModPhys.75.559
[29]  Vavrycuk, V. (2019) Universe Opacity and Cosmic Dynamics.
[30]  Starr, M. (2019) ScienceAlert.com.
[31]  Rix, H.W. and Bovy, J. (2013) The Milky Way’s Stellar Disk. The Astronomy and Astrophysics Review, 21, Article No. 61.
https://doi.org/10.1007/s00159-013-0061-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133