全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The First Principle Study of β-CuAgSe Subcells

DOI: 10.4236/jamp.2021.97106, PP. 1549-1559

Keywords: CuAgSe, Subcells, Stability, Electronic Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

CuAgSe has been considered as a promising thermoelectric material because of its high mobility and low thermal conductivity. The superior performance of CuAgSe is closely related to its crystal structure and electric properties. In this work, the stabilities and electronic structures of different three CuAgSe subcells have been theoretically investigated using Vienna Ab initio Simulation Package (VASP) with DFT calculations. We found that the different occupations of copper atoms would affect the stability and electronic structures of CuAgSe subcells. The various directions of Cu-Se chain in neighbor layers will result in different stabilities and electronic properties.

References

[1]  Zheng, X.F., Liu, C.X., Yan, Y.Y. and Wang, Q. (2014) A Review of Thermoelectrics Research—Recent Developments and Potentials for Sustainable and Renewable Energy Applications. Renewable and Sustainable Energy Reviews, 32, 486-503.
https://doi.org/10.1016/j.rser.2013.12.053
[2]  Moroz, N.A., Olvera, A., Willis, G.M. and Poudeu, P.F. (2015) Rapid Direct Conversion of Cu(2-x)Se to CuAgSe Nanoplatelets via Ion Exchange Reactions at Room Temperature. Nanoscale, 7, 9452-9456.
https://doi.org/10.1039/C5NR01451D
[3]  Wei, T.-R., Qin, Y., Deng, T., Song, Q., Jiang, B., Liu, R., Qiu, P., Shi, X. and Chen, L. (2019) Copper Chalcogenide Thermoelectric Materials. Science China Materials, 62, 8-24.
https://doi.org/10.1007/s40843-018-9314-5
[4]  Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W. and Powalla, M. (2011) New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells beyond 20%. Progress in Photovoltaics: Research and Applications, 19, 894-897.
https://doi.org/10.1002/pip.1078
[5]  Gahlot, S., Dappozze, F., Singh, D., Ahuja, R., Cardenas, L., Burel, L., Amans, D., Guillard, C. and Mishra, S. (2020) Room-Temperature Conversion of Cu2-xSe to CuAgSe Nanoparticles to Enhance the Photocatalytic Performance of Their Composites with TiO2. Dalton Transactions, 49, 3580-3591.
https://doi.org/10.1039/C9DT04726C
[6]  Das, T. and Balatsky, A.V. (2011) Modulated Superconductivity Due to Vacancy and Magnetic Order in AyFe2-x/2Se2 [A = Cs, K, (Tl, Rb), (Tl, K)] Iron-Selenide Superconductors. Physical Review B, 84, Article ID: 115117.
https://doi.org/10.1103/PhysRevB.84.115117
[7]  Dagotto, E. (2013) Colloquium: The Unexpected Properties of Alkali Metal Iron Selenide Superconductors. Reviews of Modern Physics, 85, 849-867.
https://doi.org/10.1103/RevModPhys.85.849
[8]  Hotzel, G. and Weppner, W. (1986) Application of Fast Ionic Conductors in Solid State Galvanic Cells for Gas Sensors. Solid State Ionics, 18-19, 1223-1227.
https://doi.org/10.1016/0167-2738(86)90338-3
[9]  Okimura, H. and Matsumae, T. (1980) Electrical Properties of Cu2-xSe Thin Films and Their Application for Solar Cells. Thin Solid Films, 71, 53-59.
https://doi.org/10.1016/0040-6090(80)90183-2
[10]  Nguyen, M.C., Choi, J.-H., Zhao, X., Wang, C.-Z., Zhang, Z. and Ho, K.-M. (2013) New Layered Structures of Cuprous Chalcogenides as Thin Film Solar Cell Materials: Cu2Te and Cu2Se. Physical Review Letters, 111, Article ID: 165502.
https://doi.org/10.1103/PhysRevLett.111.165502
[11]  Todorov, T.K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y. and Mitzi, D.B. (2013) Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells. Advanced Energy Materials, 3, 34-38.
https://doi.org/10.1002/aenm.201200348
[12]  Ishiwata, S., Shiomi, Y., Lee, J.S., Bahramy, M.S., Suzuki, T., Uchida, M., Arita, R., Taguchi, Y. and Tokura, Y. (2013) Extremely High Electron Mobility in a Phonon-Glass Semimetal. Natural Materials, 12, 512-517.
https://doi.org/10.1038/nmat3621
[13]  Han, C., Sun, Q., Cheng, Z.X., Wang, J.L., Li, Z., Lu, G.Q. and Dou, S.X. (2014) Ambient Scalable Synthesis of Surfactant-Free Thermoelectric CuAgSe Nanoparticles with Reversible Metallic-n-p Conductivity Transition. Journal of the American Chemical Society, 136, 17626-17633.
https://doi.org/10.1021/ja510433j
[14]  Qiu, P.F., Wang, X.B., Zhang, T.S., Shi, X. and Chen, L.D. (2015) Thermoelectric Properties of Te-Doped Ternary CuAgSe Compounds. Journal of Materials Chemistry A, 3, 22454-22461.
https://doi.org/10.1039/C5TA06780D
[15]  Qiu, W., Lu, P., Yuan, X., Xu, F., Wu, L., Ke, X., Liu, H., Yang, J., Shi, X., Chen, L., Yang, J. and Zhang, W. (2016) Structure Family and Polymorphous Phase Transition in the Compounds with Soft Sublattice: Cu2Se as an Example. The Journal of Chemical Physics, 144, Article ID: 194502.
https://doi.org/10.1063/1.4948609
[16]  Hong, A.J., Li, L., Zhu, H.X., Zhou, X.H., He, Q.Y., Liu, W.S., Yan, Z.B., Liu, J.M. and Ren, Z.F. (2014) Anomalous Transport and Thermoelectric Performances of CuAgSe Compounds. Solid State Ionics, 261, 21-25.
https://doi.org/10.1016/j.ssi.2014.03.025
[17]  Chrissafis, K., Vouroutzis, N., Paraskevopoulos, K.M., Frangis, N. and Manolikas, C. (2004) Phase Transformation in CuAgSe: A DSC and Electron Diffraction Examination. Journal of Alloys and Compounds, 385, 169-172.
https://doi.org/10.1016/j.jallcom.2004.04.119
[18]  Shi, C., Xi, X., Hou, Z., Liu, E., Wang, W., Jin, S., Wu, Y. and Wu, G. (2016) Atomic-Level Characterization of Dynamics of Copper Ions in CuAgSe. The Journal of Physical Chemistry C, 120, 3229-3234.
https://doi.org/10.1021/acs.jpcc.5b12296
[19]  Wang, X., Qiu, P., Zhang, T., Ren, D., Wu, L., Shi, X., Yang, J. and Chen, L. (2015) Compound Defects and Thermoelectric Properties in Ternary CuAgSe-Based Materials. Journal of Materials Chemistry A, 3, 13662-13670.
https://doi.org/10.1039/C5TA02721G
[20]  Frueh Jr., A.J., Czamanske, G.K. and Knight, C.H. (1956) The Ciystallography of Eucairite, CuAgSe. Zeitschrift fur KristaUographie, 108, 389-396.
https://doi.org/10.1524/zkri.1957.108.5-6.389
[21]  Momma, K. and Izumi, F. (2008) VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. Journal of Applied Crystallography, 41, 653-658.
https://doi.org/10.1107/S0021889808012016
[22]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
https://doi.org/10.1103/PhysRev.140.A1133
[23]  Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for Ab-Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[24]  Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[25]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[26]  Becke, A.D. (2014) Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. The Journal of Chemical Physics, 140, 18A301.
https://doi.org/10.1063/1.4869598
[27]  Pedroza, L.S., da Silva, A.J.R. and Capelle, K. (2009) Gradient-Dependent Density Functionals of the Perdew-Burke-Ernzerhof Type for Atoms, Molecules, and Solids. Physical Review B, 79, 201106(R).
https://doi.org/10.1103/PhysRevB.79.201106
[28]  Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, Condensed Matter, 50, 17953-17979.
https://doi.org/10.1103/PhysRevB.50.17953
[29]  Chu, W., Zheng, Q., Akimov, A.V., Zhao, J., Saidi, W.A. and Prezhdo, O.V. (2020) Accurate Computation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. The Journal of Physical Chemistry Letters, 11, 10073-10080.
https://doi.org/10.1021/acs.jpclett.0c03080
[30]  Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
[31]  Sun, Y., Xi, L., Yang, J., Wu, L., Shi, X., Chen, L., Snyder, J., Yang, J. and Zhang, W. (2017) The “Electron Crystal” Behavior in Copper Chalcogenides Cu2X (X = Se, S). Journal of Materials Chemistry A, 5, 5098-5105.
https://doi.org/10.1039/C6TA10725G
[32]  Zhang, Y., Yuan, X., Sun, X., Shih, B.-C., Zhang, P. and Zhang, W. (2011) Comparative Study of Structural and Electronic Properties of Cu-Based Multinary Semiconductors. Physical Review B, 84, Article ID: 075127.
https://doi.org/10.1103/PhysRevB.84.075127
[33]  Zhang, Y., Wang, Y., Xi, L., Qiu, R., Shi, X., Zhang, P. and Zhang, W. (2014) Electronic Structure of Antifluorite Cu2X (X = S, Se, Te) within the Modified Becke-Johnson Potential plus an On-Site Coulomb U. The Journal of Chemical Physics, 140, Article ID: 074702.
https://doi.org/10.1063/1.4865257
[34]  Froyen, S. (1989) Brillouin-Zone Integration by Fourier Quadrature: Special Points for Superlattice and Supercell Calculations. Physical Review B, Condensed Matter, 39, 3168-3172.
https://doi.org/10.1103/PhysRevB.39.3168
[35]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[36]  Asadov, Y.G., Aliyev, Y.I. and Babaev, A.G. (2015) Polymorphic Transformations in Cu2Se, Ag2Se, AgCuSe and the Role of Partial Cation-Cation and Anion-Anion Replacement in Stabilizing Their Modifications. Physics of Particles and Nuclei, 46, 452-474.
https://doi.org/10.1134/S106377961503003X
[37]  Earley, J.W. (1950) Description and Synthesis of the Selenide Minerals. American Mineralogist, 35, 337-364.
http://www.minsocam.org/ammin/AM35/AM35_337
[38]  Baikulov, R.B. and Asadov, Y.G. (2005) High-Temperature X-Ray Diffraction Study of the α β; Transformation in CuAgSe. Inorganic Materials, 41, 338-342.
https://doi.org/10.1007/s10789-005-0134-9
[39]  Shi, C., Xi, X., Liu, E., Wu, G. and Wang, W. (2018) Vacancy Mediated Ionic Mobility in a Phonon Glass Material CuAgSe. Solid State Ionics, 326, 183-187.
https://doi.org/10.1016/j.ssi.2018.10.005
[40]  Setyawan, W. and Curtarolo, S. (2010) High-Throughput Electronic Band Structure Calculations: Challenges and Tools. Computational Materials Science, 49, 299-312.
https://doi.org/10.1016/j.commatsci.2010.05.010
[41]  Rasander, M., Bergqvist, L. and Delin, A. (2013) Density Functional Theory Study of the Electronic Structure of Fluorite Cu2Se. Journal of Physics: Condensed Matter, 25, Article ID: 125503.
https://doi.org/10.1088/0953-8984/25/12/125503
[42]  Kashida, S., Shimosaka, W., Mori, M. and Yoshimura, D. (2003) Valence Band Photoemission Study of the Copper Chalcogenide Compounds, Cu2S, Cu2Se and Cu2Te. Journal of Physics and Chemistry of Solids, 64, 2357-2363.
https://doi.org/10.1016/S0022-3697(03)00272-5
[43]  Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Li, Q., Uher, C., Day, T. and Snyder, G.J. (2012) Copper Ion Liquid-Like Thermoelectrics. Nature Materials, 11, 422-425.
https://doi.org/10.1038/nmat3273

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133