Studying the two famous old problems that why the moon can move around the Sun and why the orbit of the Moon around the Earth cannot be broken off by the Sun under the condition calculating with F=GMm/R2, the attractive force of the Sun on the Moon is almost 2.2 times that of the Earth, we found that the planet and moon are unified as one single gravitational unit which results in that the Sun cannot have the force of F=GMm/R2 on the moon. The moon is moved by the gravitational unit orbiting around the Sun. It could indicate that the gravitational field of the moon is limited inside the unit and the gravitational fields of both the planet and moon are unified as one single field interacting with the Sun. The findings are further clarified by reestablishing Newton’s repulsive gravity.
References
[1]
Copernicus, N. (1978) De Revolutionibus Orbium Cœlestium. Libri VI. Polish Scientific Publications, Warsaw.
[2]
Kepler, J. (1929) Neue Astronomie, übersetzt und eingeleitet von Max Caspar. Oldenbourg, München/Berlin.
[3]
Newton, I. (1972) Philosophiae Naturalis Principia Mathematica. Harvard University, Cambridge, MA.
[4]
Gutzwiller, M.C. (1998) Moon-Earth-Sun: The Oldest Three-Body Problem. Review of Modern Physics, 70, 589-639. https://doi.org/10.1103/RevModPhys.70.589
[5]
Fitzpatrick, R. (2012) An Introduction to Celestial Mechanics. Cambridge University Press, Cambridge.
[6]
Hill, G.W. (1878) Researches in the Lunar Theory. American Journal of Mathematics, 1, 245-260. https://doi.org/10.2307/2369313
[7]
Hill, G.W. (1891) On Certain Lunar Inequalities Due to the Action of Jupiter. Washington Astronomical Papers of the American Ephemeris, 3, 373-393.
[8]
Colasurdo, G. (2006) Politecnico di Torino. In: Chapter 6 Astrodynamics, 2nd Edition, 88-90.
[9]
Araujo, R.A.N., Winter, O.C., Prado, A.F.B.A. and Vieira Martins, R. (2008) Sphere of Influence and Gravitational Capture Radius: A Dynamical Approach. Monthly Notices of the Royal Astronomical Society, 391, 675-684. https://doi.org/10.1111/j.1365-2966.2008.13833.x
[10]
Hamilton D.P. and Burns J.A. (1991) Orbital Stability Zones about Asteroids. Icarus, 92, 118-131. https://doi.org/10.1016/0019-1035(91)90039-V
[11]
Hamilton, D.P. and Burns, J.A. (1992) Orbital Stability Zones about Asteroids. II—The Destabilizing Effects of Eccentric Orbits and of Solar Radiation. Icarus, 96, 43-46. https://doi.org/10.1016/0019-1035(92)90005-R
[12]
Cuntz, M. and Yeager, K.E. (2009) On the Validity of the Hill Radius Criterion for the Ejection of Planets from Stellar Habitable Zones. The Astrophysical Journal, 697, L86-L90. https://doi.org/10.1088/0004-637X/697/2/L86
[13]
Paskowitz, M.E. and Scheeres, D.J. (2004) Identifying Safe Zones for Planetary Satellite Orbiters. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, 16-19 August 2004, 1-24. https://doi.org/10.2514/6.2004-4862
[14]
Scheeres, D.J., Guman, M.D. and Villac, B.F. (2001) Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter. Journal of Guidance Control and Dynamics, 24, 778-787. https://doi.org/10.2514/2.4778
[15]
Einstein, A. (1916) The Foundation of the General Theory of Relativity. Annalen der Physik, 49, 769-822. https://doi.org/10.1002/andp.19163540702
[16]
Woodard, R.P. (2009) How Far Are We from the Quantum Theory of Gravity? Reports on Progress in Physics, 72, Article ID: 126002. https://doi.org/10.1088/0034-4885/72/12/126002
[17]
Tomić, A.S. (2013) The Lunar Orbit Paradox. Theoretical and Applied Mechanics, 40, 135-146. https://doi.org/10.2298/TAM1301135T
[18]
Turner, A.B. (1912) The Moon’s Orbit around the Sun. Journal of the Royal Astronomical Society of Canada, 6, 117.
[19]
Delaunay, C.-E. (1867) Théorie du Mouvement de la Lune, Vols. 2 in Mem. Acad. Sci. 28 and 29 (Mallet-Bachelier, Paris, 1860 and Gauthier-Villars, Paris, 1867).
[20]
Beauvalet, L., Robert, V., Lainely, V., Arlot, J.-E. and Colas, E. (2013) ODIN: A New Model and Ephemeris for the Pluto System. Astronomy & Astrophysics, 553, Article No. A14. https://doi.org/10.1051/0004-6361/201220654
[21]
Stern, S.A., Bagenal, F., Ennico, K., Gladstone, G.R., Grundy, W.M., McKinnon, W.B., et al. (2015) The Pluto System: Initial Results from Its Exploration by New Horizons. Science, 350, Article No. aad1815. https://doi.org/10.1126/science.aad1815
[22]
Correia, A.C.M. (2020) Tidal Evolution of the Pluto–Charon Binary. Astronomy & Astrophysics, 644, Atyicle No. A94. https://doi.org/10.1051/0004-6361/202038858
[23]
Grundy, W., Mckinnon, W.B., Weaver, H.A., Weaver, H.A. and Young, L.A. (2018) The Pluto System after New Horizons. Annual Review of Astronomy and Astrophysics, 56, 357-392. https://doi.org/10.1146/annurev-astro-081817-051935
[24]
Kamilla, S.K., Roy, G.S., Nayak, M.K., Sharma, N.K., Das, R. and Pattnaik, S. (2011) Binary Star System—A Spectral Analysis. Latin-American Journal of Physics Education, 5, 438-442.
[25]
Musielak, Z.E. and Quarles, B. (2014) The Three-Body Problem. Reports on Progress in Physics, 77, Article ID: 065901. arXiv: 1508.02312 https://doi.org/10.1088/0034-4885/77/6/065901
[26]
Euler, L. (1767) De motu rectilineo trium corporum se mutuo attrahentium. Novi Commentarii Academiae Scientiarum Petropolitanae, 11, 144-151.
[27]
Lagrange, L. (1772) Essai sur le problème des trois corps. Euvres, 6, 229-331.
[28]
Jacobi, G. (1836) Sur le mouvement d’un point et sur un cas particulier du problème des trois corps. Comptes Rendus de l’Académie des Sciences de Pariss, 3, 59-61.
[29]
Poincaré, H. (1892) Les méthodes nouvelles de la mécanique céleste, Tome 1 (New Methods of Celestial Mechanics, Parts 1). Gauthier-Villars, American Inst. Phys.
[30]
Poincaré, H. (1892) Les méthodes nouvelles de la mécanique céleste, Tome 2 (New Methods of Celestial Mechanics, Parts 2). Gauthier-Villars, American Inst. Phys.
[31]
Poincaré, H. (1899) Les méthodes nouvelles de la mécanique céleste, Tome 3 (New Methods of Celestial Mechanics, Parts 3). Gauthier-Villars, American Inst. Phys.
[32]
Christy, J.W. and Harrington, R.S. (1978) The Satellite of Pluto. Astronomical Journal, 83, 1005-1008. https://doi.org/10.1086/112284
[33]
Georgescu, I. (2008) Interactions: Conversation with Sabine Hossenfelder. http://blogs.nature.com/onyourwavelength/2018/04/06/interactions-conversation-with-sabine-hossenfelder/
[34]
Murphy, T. (2006) Perturbations to the Lunar Orbit. http://tmurphy.physics.ucsd.edu/apollo/doc/perturb.pdf
[35]
Ghoddousi-Fard, R. and Peter D. (2006) Online GPS Processing Services. GPS Solutions, 10, 12-20. https://doi.org/10.1007/s10291-005-0147-5
[36]
Kouba, J. and Heroux, P. (2001) Precise Point Positioning Using IGS Orbit Products. GPS Solutions, 5, 12-28. https://doi.org/10.1007/PL00012883
[37]
Christophe, B., Marque, J.-P. and Foulon, B. (2010) In-Orbit Data Verification of the Accelerometers of the ESA GOCE Mission. SF2A-2010: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, 113.
[38]
Kammer, J.A., Becker, T.M., Retherford, K.D., Stern, S.A., Olkin, C.B., Buie, M.W., et al. (2018) Probing the Hill Sphere of (486958) 2014 MU69: HST FGS Observations during the 2017 July 17 Stellar Occultation. The Astronomical Journal, 156, Article No. 72. https://doi.org/10.3847/1538-3881/aacdf8
[39]
Kammer, J.A., Becker, T.M., Retherford, K.D., Stern, S.A., Olkin, C.B., Buie, M.W., et al. (2019) Probing the Hill Sphere of (486958) 2014 MU69. II. Hubble Space Telescope Fine Guidance Sensors Observations during the 2018 August 4 Stellar Occultation. The Astronomical Journal, 158, Article No. 168. https://doi.org/10.3847/1538-3881/ab3f31
[40]
Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, Inc., New York.
[41]
Bekenstein, J. (2013) Physics Crunch: Time to Discard Relativity? NewScientist, 217, 42. https://doi.org/10.1016/S0262-4079(13)60568-0
[42]
Kazmierczak, J. (2021) Discovery Alert: First Six-Star System Where All Six Stars Undergo Eclipses. https://exoplanets.nasa.gov/news/1672/discovery-alert-first-six-star-system-where-all-six-stars-undergo-eclipses/
[43]
Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F. and Ackley, K., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102. https://doi.org/10.1103/PhysRevLett.116.061102
[44]
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., et al. (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119, Article ID: 161101. https://doi.org/10.1103/PhysRevLett.119.161101
[45]
Reid, M.J., Menten, K.M., Zheng, X.W., Brunthaler, A., Moscadelli, L., Xu, Y., et al. (2009) Trigonometric Parallaxes of Massive Star-Forming Regions. VI. Galactic Structure, Fundamental Parameters, and Noncircular Motions. The Astrophysical Journal, 700, 137-148. arXiv: 0902.3913. https://doi.org/10.1088/0004-637X/700/1/137
[46]
Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., et al. (2008) Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. The Astrophysical Journal, 689, 1044-1062. arXiv: 0808.2870. https://doi.org/10.1086/592738
[47]
Rubin, V., Thonnard, N. and Ford Jr., W.K. (1980) Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R = 4kpc) to UGC 2885 (R = 122kpc). Astrophysical Journal, 238, 471. https://doi.org/10.1086/158003
[48]
McGaugh, S.S., Lelli, F. and Schombert, J.M. (2016) Radial Acceleration Relation in Rotationally Supported Galaxies. Physical Review Letters, 117, Article ID: 201101. arxiv: 1609.05917. https://doi.org/10.1103/PhysRevLett.117.201101
[49]
Nityananda, R. (2009) The Gravitational Dynamics of Galaxies. Pramana, 73, 193-214. https://doi.org/10.1007/s12043-009-0097-5
[50]
Rutherford, E. (1911) The Scattering of α and β-Particles by Matter and the Structure of the Atom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 669-688. https://doi.org/10.1080/14786440508637080