全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Capacitive Coupling Modalities for Oncological Hyperthermia

DOI: 10.4236/ojbiphy.2021.113010, PP. 252-313

Keywords: Plane-Wave Matching, Impedance Matching, Apoptosis, DAMP, ICD, Selective Heating, Electromagnetic Heterogeneity, Membrane Raft

Full-Text   Cite this paper   Add to My Lib

Abstract:

The local-regional oncological hyperthermia has various electromagnetic methods for energy-transfer. The differences involve conceptual considerations and technical solutions. The most frequently applied energy transfer is capacitive coupling, concentrating the electric field to be the active heating component. The realization of the capacitive coupling set-up is divided into two different categories based on their goals for heating: 1) the homogeneous (conventional) heating, using isothermal conditions for dosing, and 2) the selective heterogeneous heating, using cellularly absorbed energy for dosing. The homogeneous heating utilizes plane-wave matching, absorbing the wave for energy transfer. The heterogenic heating uses impedance matching, selecting the malignant cells by their electromagnetic specialties, like their heterogenic impedance, higher membrane-raft density, and different spatio-temporal (pathologic pattern) arrangements. This article’s objective is to compare and discuss the details of the two kinds of capacitive coupling techniques.

References

[1]  von Bertalanffy, K.L. (1934) Untersuchungen über die Gesetzlichkeit des Wachstums: I. Teil: Allgemeine Grundlagen der Theorie; Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen, 131, 613-652.
https://doi.org/10.1007/BF00650112
[2]  Green, D.M. (1991) Chaos, Fractals and Nonlinear Dynamics in Evolution and Phylogeny. Trends in Ecology & Evolution, 6, 334-337.
https://doi.org/10.1016/0169-5347(91)90042-V
[3]  Szentgyorgyi, A. (1978) The Living State and Cancer. Marcel Dekker Inc., New York.
[4]  Balmain, A., Gray, J. and Ponder, B. (2014) The Genetics and Genomics of Cancer. Nature Genetics, 33, 238-244.
https://doi.org/10.1038/ng1107
[5]  Szigeti, G.P., Szasz, O. and Hegyi, G. (2017) Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer. Journal of Neoplasm, 1, 1-13.
http://neoplasm.imedpub.com/connections-between-warburgs-and-szentgyorgyis-approach-about-thecauses-of-cancer.pdf
[6]  Hanahan, D. and Weinberg, R.A. (2000) The Hallmarks of Cancer. Cell, 100, 57-70.
https://doi.org/10.1016/S0092-8674(00)81683-9
[7]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[8]  Aktipis, C.A., Bobby, A.M., Jansen, G., et al. (2015) Cancer across the Tree of Life: Cooperation and Cheating in Multicellularity. Philosophical Transactions of the Royal Society B, 370, Article ID: 20140219.
https://doi.org/10.1098/rstb.2014.0219
[9]  Popkin, G. (2011) Physics Sheds Light on Cancer and Bacteria Evolution. APC News, 20.
https://www.aps.org/publications/apsnews/201105/cancerbacteria.cfm .
[10]  Trigos, A.S., Pearson, R.B., Paenfuss, A.T., et al. (2018) How the Evolution of Multicellularity Set the Stage for Cancer. British Journal of Cancer, 118, 145-152.
https://doi.org/10.1038/bjc.2017.398
[11]  Trigos, A.S., Pearson, R.B., Papenfuss, A.T., et al. (2016) Altered Interactions between Unicellular and Multicellular Genes Drive Hallmarks of Transformation in a Diverse Range of Solid Tumors. Proceedings of the National Academy of Sciences of the United States of America, 114, 6406-6411.
https://doi.org/10.1073/pnas.1617743114
[12]  Davidson, C.D., Wang, W.Y., Zaimi, I., et al. (2019) Cell Force-Mediated Matrix Reorganization Underlies Multicellular Network Assembly. Scientific Reports, 9, Article No. 12.
https://doi.org/10.1038/s41598-018-37044-1
[13]  Meng, X., Riordan, N.H. (2006) Cancer Is a Functional Repair Tissue. Medical Hypotheses, 66, 486-490.
https://doi.org/10.1016/j.mehy.2005.09.041
[14]  Dvorak, H.F. (1986) Tumors: Wounds That Do Not Heal, Similarities between Tumor Stroma Generation and Wound Healing. The New England Journal of Medicine, 315, 1650-1659.
https://doi.org/10.1056/NEJM198612253152606
[15]  National Cancer Institute. National Cancer Act of 1971.
https://www.cancer.gov/about-nci/overview/history/national-cancer-act-1971
[16]  Spector, R. (2010) The War on Cancer A Progress Report for Skeptics. Skeptical Inquirer, 34, 25-31.
[17]  Brecht, B. (1935) Leben des Galilei. In: Losey, J. (1975), Galileo, Grove Press, New York.
[18]  DiTrocchio, F. (1994) Der grosse schwindel: Betrug und falschung in der wissenschaft. Campus Verlag, Frankfurt.
[19]  Roussakow, S. (2013) The History of Hyperthermia Rise and Decline. Conference of the International Clinical Hyperthermia Society 2012, 2013, Article ID: 428027.
https://doi.org/10.1155/2013/428027
[20]  Van der Zee, J. (2005) Radiotherapy and Hyperthermia in Cervical Cancer. ESTRO/TMH Presentation, Mumbai, 2 March 2005.
http://www.docstoc.com/docs/73493260/Welcome-to-Tata-Memorial-Centre
[21]  ITU Radio Regulations, CHAPTER II—Frequencies, ARTICLE 5 Frequency Allocations, Section IV—Table of Frequency Allocations.
[22]  Hajimiri, A. (2010) Generalized Time- and Transfer-Constant Circuit Analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 57, 1105-1121.
https://doi.org/10.1109/TCSI.2009.2030092
[23]  Szasz, A. (2014) Oncothermia: Complex Therapy by EM and Fractal Physiology. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, 16-23 August 2014, 1-4.
https://doi.org/10.1109/URSIGASS.2014.6930100
[24]  Rao, N.N. (1994) Elements of Engineering Electromagnetics, Prentice Hall, Englewood Cliffs, NJ.
[25]  Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, Taylor & Francis Group, 323-336.
[26]  Fiorentini, G. and Szasz, A. (2006) Hyperthermia Today: Electric Energy, a New Opportunity in Cancer Treatment. Journal of Cancer Research and Therapeutics, 2, 41-46.
https://doi.org/10.4103/0973-1482.25848
[27]  Keisari, Y. (2013) Tumor Ablation, Effects on Systemic and Local Anti-Tumor Immunity and on Other Tumor-Microenvironment Interactions. Springer Science + Business Media, Dordrecht.
https://doi.org/10.1007/978-94-007-4694-7
[28]  Szasz, O., Szigeti, G.P., Vancsik, T. and Szasz, A. (2018) Hyperthermia Dosing and Depth of Effect. Open Journal of Biophysics, 8, 31-48.
https://doi.org/10.4236/ojbiphy.2018.81004
[29]  Szasz, A., Szasz, N. and Szasz, O. (2010) Experimental Condition in Vivo. In: Oncothermia: Principles and Practices, Springer Science, Heidelberg, 476-477.
https://doi.org/10.1007/978-90-481-9498-8
[30]  Moran, C.H., Wainerdi, S.M., Cherukuri, T.K., et al. (2009) Size-Dependent Joule Heating of Gold Nanoparticles Using Capacitively Coupled Radiofrequency Fields. Nano Research, 2, 400-405.
https://doi.org/10.1007/s12274-009-9048-1
[31]  Raoof, M., Cisneros, B.T., Corr, S.J., et al. (2013) Tumor Selective Hyperthermia Induced by Short-Wave Capacitively-Coupled RF Electric-Fields. PLoS ONE, 8, e68506.
https://doi.org/10.1371/journal.pone.0068506
[32]  Raoof, M. and Curley, S.A. (2011) Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma. International Journal of Hepatology, 2011, Article ID: 676957.
https://doi.org/10.4061/2011/676957
[33]  Erdmann, B., Lang, J. and Seebass, M. (1998) Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model. Annals of the New York Academy of Sciences, 858, 36-46.
https://doi.org/10.1111/j.1749-6632.1998.tb10138.x
[34]  Szasz, O., Szigeti, G.P. and Szasz, A. (2016) Connections between the Specific Absorption Rate and the Local Temperature. Open Journal of Biophysics, 6, 53-74.
http://file.scirp.org/pdf/OJBIPHY_2016063014260548.pdf
https://doi.org/10.4236/ojbiphy.2016.63007
[35]  Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electro-Magnetic Field in Tumor Cell Killing. Strahlentherapie und Onkologie, 185, 120-126.
http://www.ncbi.nlm.nih.gov/pubmed/19240999
https://doi.org/10.1007/s00066-009-1903-1
[36]  Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314.
https://doi.org/10.1126/science.123.3191.309
[37]  Semenza, G.L. (2008) Tumor Metabolism: Cancer Cells Give and Take Lactate. The Journal of Clinical Investigation, 118, 3835-3837.
https://doi.org/10.1172/JCI37373
[38]  Stoy, R.D., Foster, K.R. and Schwan, H.P. (1982) Dielectric Properties of Mammalian Tissues form 0.1 to 100 MHz: A Summary of Recent Data. Physics in Medicine & Biology, 27, 501-513.
https://doi.org/10.1088/0031-9155/27/4/002
[39]  Gershing, E. (1999) Monitoring Temperature-Induced Changes in Tissue during Hyperthermia by Impedance Methods. Annals of the New York Academy of Sciences, 873, 13-20.
https://doi.org/10.1111/j.1749-6632.1999.tb09444.x
[40]  Oehr, P., Biersack, H.J., Coleman, R.E., Eds. (2004) PET and PET-CT in Oncology. Springer Verlag, Berlin-Heidelberg.
https://doi.org/10.1007/978-3-642-18803-9
[41]  Larson, S.M. (2004) Positron Emission Tomography-Based Molecular Imaging in Human Cancer: Exploring the Link between Hypoxia and Accelerated Glucose Metabolism. Clinical Cancer Research, 10, 2203-2204.
https://doi.org/10.1158/1078-0432.CCR-0002-4
[42]  Sha, L., Ward, E.R. and Story, B. (2002) A Review of Dielectric Properties of Normal and Malignant Breast Tissue. Proceedings IEEE SoutheastCon 2002, Columbia, SC, 5-7 April 2002, 457-462.
[43]  Blad, B., Wendel, P., Jönsson, M., et al. (1999) An Electrical Impedance Index to Distinguish between Normal and Cancerous Tissues. Journal of Medical Engineering & Technology, 23, 57-62.
https://doi.org/10.1080/030919099294294
[44]  Szentgyorgyi, A. (1968) Bioelectronics: A Study on Cellular Regulations, Defense, and Cancer. Academic Press, New York, London.
[45]  Foster, K.R. and Schepps, J.L. (1981) Dielectric Properties of Tumor and Normal Tissues at Radio through Microwave Frequencies. Journal of Microwave Power, 16, 107-119.
https://doi.org/10.1080/16070658.1981.11689230
[46]  Blad, B. and Baldetorp, B. (1996) Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue: A Possible Clinical Application for Electric Impedance Tomography. Physiological Measurement, 17, A105-A115.
https://doi.org/10.1088/0967-3334/17/4A/015
[47]  Babaeizadeh, S. (2007) 3-D Electrical Impedance Tomography of Piecewise Constant Domains with Known Internal Boundaries. IEEE Transactions on Biomedical Engineering, 54, 2-10.
https://doi.org/10.1109/TBME.2006.886839
[48]  TransCan TS: Transcan Medical Ltd. Migdal Ha’Emek, Israel, distributed by Siemens AG, Germany, 2000.
[49]  Joy, M.L.G. (2004) MR Current Density and Conductivity Imaging: The State of the Art. IEMBS 26th Annual International Conference of the IEEE, 2, 5315-5319.
[50]  Suk, H.O. (2003) Conductivity and Current Density Image Reconstruction Using Harmonic Bz Algorithm in Magnetic Resonance Electrical Impedance Tomography. Physics in Medicine & Biology, 48, 3101-3116.
https://doi.org/10.1088/0031-9155/48/19/001
[51]  Mikac, U., Demsar, F., Beravs, K. and Sersa, I. (2001) Magnetic Resonance Imaging of Alternating Electric Currents. Magnetic Resonance Imaging, 19, 845-856.
https://doi.org/10.1016/S0730-725X(01)00393-9
[52]  Muftuler, T.L., Hamamura, M.J., Birgul, O. and Nalcioglu, O. (2006) In Vivo MRI Electrical Impedance Tomography (MREIT) of Tumors. Technology in Cancer Research & Treatment, 5, 381-387.
[53]  Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229.
https://doi.org/10.4236/ojbiphy.2017.74016
[54]  Caduff, A., Talary, M.S. and Zakharov, P. (2010) Cutaneous Blood Perfusion as a Perturbing Factor for Noninvasive Glucose Monitoring. Diabetes Technology & Therapeutics, 12, 1-9.
https://doi.org/10.1089/dia.2009.0095
[55]  Schwan, H.P. (1982) Nonthermal Cellular Effects of Electromagnetic Fields: AC-Field Induced Ponderomotoric Forces. British Journal of Cancer, 45, 220-224.
[56]  Pething, R. (1979) Dielectric and Electronic Properties of Biological Materials. John Wiley & Sons, New York.
[57]  Szasz, O., Andocs, G., Kondo, T., Rehman, M.U., Papp E, Vancsik T. (2015) Heating of Membrane Raft of Cancer-Cells. Journal of Clinical Oncology, 33, e22176.
https://doi.org/10.1200/jco.2015.33.15_suppl.e22176
[58]  Astumian, R.D. and Chock, P.B. (1989) Effects of Oscillations and Energy-Driven Fluctuations on the Dynamics of Enzyme Catalysis and Free-Energy Transduction. Physical Review A, 39, 6416-6435.
https://doi.org/10.1103/PhysRevA.39.6416
[59]  Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press, Amsterdam.
[60]  West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London.
[61]  Lovelady, D.C., Richmond, T.C., Maggi, A.N., Lo, C.M. and Rabson, D.A. (2007) Distinguishing Cancerous from Noncancerous Cells through Analysis of Electrical Noise. Physical Review E, 76, Article ID: 041908.
https://doi.org/10.1103/PhysRevE.76.041908
[62]  Szasz, O., Andocs, G. and Meggyeshazi, N. (2013) Modulation Effect in Oncothermia. Conference of the International Clinical Hyperthermia Society 2012, 2013, Article ID: 395678.
http://www.hindawi.com/archive/2013/398678/
https://doi.org/10.1155/2013/398678
[63]  Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekker, New York.
[64]  Kirson, E.D., Gurvich, Z., Schneiderman, R., et al. (2004) Disruption of Cancer Cell Replication by Alternating Electric Fields. Cancer Research, 64, 3288-3295.
https://doi.org/10.1158/0008-5472.CAN-04-0083
[65]  Vincze, G. and Sziget, G.P. (2016) Reorganization of the Cytoskeleton. Journal of Advances in Biology, 9, 1872-1882.
https://cirworld.com/index.php/jab/article/view/4059
[66]  Springer, M. and Paulsson, J. (2006) Harmonies from Noise. Nature, 439, 27-28.
https://doi.org/10.1038/439027a
[67]  West, J.B. (2013) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore.
https://doi.org/10.1142/8577
[68]  Hoop, B. and Peng, C.-K. (2000) Fluctiations and Fractal Noise in Biological Membranes. The Journal of Membrane Biology, 177, 177-185.
https://doi.org/10.1007/s002320010001
[69]  Szasz, O., Vincze, G., Szigeti, G.P. and Szasz, A. (2017) Intrinsic Noise Monitoring of Complex Systems. Open Journal of Biophysics, 7, 197-215.
https://doi.org/10.4236/ojbiphy.2017.74015
[70]  Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science, Heidelberg. (Ch 4.1, pp. 220, Fig. 4.52)
[71]  Yang, K.-L., Huang, C.-C., Chi, M.-S., Chiang, H.-C., Wang, Y.-S., Andocs, G., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092.
https://doi.org/10.18632/oncotarget.11444
[72]  Shinitzky, M. (1984) Membrane Fluidity in Malignancy Adversative and Recuperative. Biochimica et Biophysica Acta, 738, 251-261.
https://doi.org/10.1016/0304-419X(83)90007-0
[73]  Goldman, D.E. (1943) Potential, Impedance, and Rectification in Membranes. Journal of General Physiology, 27, 37-60.
https://doi.org/10.1085/jgp.27.1.37
[74]  Ramachandran, S., Blick, R.H. and van der Weide, DW. (2010) Radio Frequency Rectification on Membrane Bound Pores. Nanotechnology, 21, Article ID: 075201.
https://doi.org/10.1088/0957-4484/21/7/075201
[75]  Tanaka, A. and Tokimasa, T. (1999) Theoretical Background for Inward Rectification. The Tokai Journal of Experimental and Clinical Medicine, 24, 147-153.
[76]  Astumian, R.D., Weaver, J.C. and Adair, R.K. (1995) Rectification and Signal Averaging of Weak Electric Fields by Biological Cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 3740-3743.
https://doi.org/10.1073/pnas.92.9.3740
[77]  Szasz, A., Vincze, G., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Electromagnetic Biology and Medicine, 22, 103-115.
https://doi.org/10.1081/JBC-120024620
[78]  Vincze, G., Szigeti, G., Andocs, G. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles. Biology and Medicine, 7, Article Number 1000249.
http://www.omicsonline.com/open-access/nanoheating-without-artificial-nanoparticles-0974-8369-1000249.php?aid=61783
[79]  Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9.
https://www.omicsonline.org/open-access/nanoheating-without-artificial-nanoparticles-part-ii-experimental-support-of-the-nanoheating-concept-of-the-modulated-electrohyperthermiamethod-0974-8369-1000247.php?aid=60362
https://doi.org/10.4172/0974-8369.1000247
[80]  Lee, S.-Y, Kim, J.-H, Han, Y.-H., et al. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. International Journal of Hyperthermia, 34, 953-960.
https://doi.org/10.1080/02656736.2018.1423709
[81]  Lee, S.-Y. (2020) Concurrent Chemo-Hyperthermia for Recurrent Cervical Cancer after Previous CCRT. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 9, Cambridge Scholars Publishing, Newcastle upon Tyne, 163-186.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[82]  Lee, S.-Y. and Kim, M.-G. (2015) The Effect of Modulated Electro-Hyperthermia on the Pharmacokinetic Properties of Nefopam in Healthy Volunteers: A Randomised, Single-Dose, Crossover Open-Label Study. International Journal of Hyperthermia, 31, 869-874.
http://www.ncbi.nlm.nih.gov/pubmed/26507458
https://doi.org/10.3109/02656736.2015.1095358
[83]  Lee, S.-Y. and Kim, M.-G. (2016) Effect of Modulated Electrohyperthermia on the Pharmacokinetics of Oral Transmucosal Fentanyl Citrate in Healthy Volunteers. Clinical Therapeutics, 38, 2548-2554.
https://www.ncbi.nlm.nih.gov/pubmed/27866658
https://doi.org/10.1016/j.clinthera.2016.10.012
[84]  Lee, S.-Y., Szigeti, G.P. and Szasz, A.M. (2019) Oncological Hyperthermia: The Correct Dosing in Clinical Applications. International Journal of Oncology, 54, 627-643.
https://www.spandidos-publications.com/10.3892/ijo.2018.4645#
https://doi.org/10.3892/ijo.2018.4645
[85]  Wust, P., Ghadjar, P., Nadobny, J., et al. (2019) Physical Analysis of Temperature-Dependent Effects of Amplitude-Modulated Electromagnetic Hyperthermia. International Journal of Hyperthermia, 36, 1246-1254.
https://www.ncbi.nlm.nih.gov/pubmed/31818170
https://doi.org/10.1080/02656736.2019.1692376
[86]  Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17.
http://www.journalrcr.org/article.asp?issn=2588-9273;year=2019;volume=10;issue=1;spage=1;epage=17;aulast=Szasz
https://doi.org/10.4103/jrcr.jrcr_25_18
[87]  Wust, P., Kortum, B., Strauss, U., Nadobny, J., Zschaeck, S., Beck, M., et al. (2020) Non-Thermal Effects of Radiofrequency Electromagnetic Fields. Scientific Reports, 10, Article No. 13488.
https://www.nature.com/articles/s41598-020-69561-3
https://doi.org/10.1038/s41598-020-69561-3
[88]  Wust, P., Nadobny, J., Zschaeck, S. and Ghadjar, P. (2020) Physics of Hyperthermia—Is Physics Really against Us? In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 16, Cambridge Scholars Publishing, Newcastle upon Tyne, 346-376.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[89]  Rao, N.N. (2004) Elements of Engineering Electromagnetics. Pearson-Prentice Hall International, Pearson Education Inc., London UK.
[90]  Szasz, A., Szasz, O. and Szasz, N. (2006) Physical Background and Technical Realization of Hyperthermia. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer, Springer, Boston, MA, 27-59.
https://doi.org/10.1007/978-0-387-33441-7_3
[91]  http://www.nist.gov/pml/div682/grp02/upload/FT11Bourland.pdf
[92]  Fluoroscopy Radiation Safety Training Manual (FDA Involved).
https://www.case.edu/ehs/Training/RadSafety/fluoro.htm
[93]  Beddar, A.S. and Krishnan, S. (2005) Intraoperative Radiotherapy Using a Mobile Electron LINAC: A Retroperitoneal Sarcoma Case. Journal of Applied Clinical Medical Physics, 6, 95-107.
http://www.jacmp.org/index.php/jacmp/rt/printerFriendly/2109/1220
https://doi.org/10.1120/jacmp.v6i3.2109
[94]  Szasz, A. (2006) Physical Background, and Technical Realization of Hyperthermia. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer. Springer Science, Berlin.
[95]  Gabriel, C. and Gabriel, S. (1996) Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies.
http://niremf.ifac.cnr.it/docs/DIELECTRIC/Report.html
[96]  Findlay, R.P. and Dimbylow, P.J. (2005) Effects of Posture on FDTD Calculations of Specific Absorption Rate in a Voxel Model of the Human Body. Physics in Medicine & Biology, 50, 3825-3835.
https://doi.org/10.1088/0031-9155/50/16/011
[97]  Joo, E., Szasz, A. and Szendro, P. (2005) Metal-Framed Spectacles and Implants and Specific Absorption Rate among Adults and Children Using Mobile Phones at 900/1800/2100 MHz. Electromagnetic Biology and Medicine, 25, 103-112.
https://doi.org/10.1080/15368370600719042
[98]  Jianging, W., Mukaide, N. and Fujiwara, O. (2003) FTDT Calculation of Organ Resonance Characteristics in an Anatomically Based Human Model for Plane-Wave Exposure. Proceedings of the Asia-Pacific Conference on Environmental Electromagnetics, Hangzhou, 4-7 November 2003, 126-129.
[99]  Armstron Laboratory, USAF School of Aerospace Medicine, AFSC (1997) Radiofrequency Radiation Dosimetry Handbook.
http://niremf.ifac.cnr.it/docs/HANDBOOK/chp1.htm
[100]  Slosarek, K., Konopacka, M., Rogoliński, J., Latocha, M. and Sochanik, A. (2005) Effect of Depth on Radiation-Induced Cell Damage in a Water Phantom. Reports of Practical Oncology and Radiotherapy, 10, 37-41.
https://doi.org/10.1016/S1507-1367(05)71080-4
[101]  Meggyeshazi, N., Andocs, G., Balogh, L., Balla, P., Kiszner, G., Teleki, I., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 190, 815-822.
https://doi.org/10.1007/s00066-014-0617-1
[102]  Vincze, G., Szasz, O. and Szasz, A. (2015) Generalization of the Thermal Dose of Hyperthermia in Oncology. Open Journal of Biophysics, 5, 97-114.
https://doi.org/10.4236/ojbiphy.2015.54009
[103]  Andocs, G., Meggyeshazi, N., Balogh, L., et al. (2015) Up-Regulation of Heat Shock Proteins and the Promotion of Damage-Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperones, 20, 37-46.
https://doi.org/10.1007/s12192-014-0523-6
[104]  Qin, W., Akutsu, Y., Andocs, G., Suganami, A., Hu, X., Yusup, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379.
https://doi.org/10.3892/or.2014.3500
[105]  Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Thermal Dosimetry: The Key to Hyperthermia’s Future. International Journal of Hyperthermia, 22, 247-253.
https://doi.org/10.1080/02656730600765072
[106]  Dewhirst, M.W., Viglianti, B.L., Lora-Michiels, M., Hanson, M. and Hoopes, P.J. (2003) Basic Principles of Thermal Dosimetry and Thermal Thresholds for Tissue Damage from Hyperthermia. International Journal of Hyperthermia, 19, 267-294.
https://doi.org/10.1080/0265673031000119006
[107]  Dewey, W.C. (1994) Arrhenius Relationships from the Molecule and Cell to the Clinic. International Journal of Hyperthermia, 10, 457-483.
https://doi.org/10.3109/02656739409009351
[108]  Perez, C.A. and Sapareto, S.A. (1984) Thermal Dose Expression in Clinical Hyperthermia and Correlation with Tumor Response/Control. Cancer Research, 44, 4818-4825.
[109]  Hegyi, G., Vincze, G. and Szasz, A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics, 2, 64-71.
http://file.scirp.org/pdf/OJBIPHY20120300001_81525786.pdf
https://doi.org/10.4236/ojbiphy.2012.23009
[110]  Maguire, P.D., Samulski, T.V., Prosnitz, L.R., Jones, E.L., Rosnre, G.L., Powers, B., Layfield, L.W., Brizel, D.M., Scully, S.P., Herrelson, M., et al. (2001) A Phase II Trial Testing the Thermal Dose Parameter CEM43oCT90 as a Predictor of Response in Soft Tissue Sarcomas Treated with Pre-Operative Thermoradiotherapy. International Journal of Hyperthermia, 17, 283-290.
https://doi.org/10.1080/02656730110039449
[111]  Dewhirst, M.W., Vujaskovic, Z., Jones, E. and Thrall, D. (2005) Re-Setting the Biologic Rationale for Thermal Therapy. International Journal of Hyperthermia, 21, 779-790.
https://doi.org/10.1080/02656730500271668
[112]  de Bruijne, M., van der Holt, B., van Rhoon, G.C. and van der Zee, J. (2010) Evaluation of CEM43°CT90 Thermal Dose in Superficial Hyperthermia: A Retrospective Analysis. Strahlentherapie und Onkologie, 186, 436-443.
https://doi.org/10.1007/s00066-010-2146-x
[113]  Assi, H. (2009) A New CEM43 Thermal Dose Model Based on Vogel-Tammann-Fulcher Behaviour in Thermal Damage Processes. Ryerson University, Toronto, Ontario.
[114]  Thrall, D.E., Prescott, D.M., Samulski, T.V., Rosner, G.L., Denman, D.L., Legorreta, R.L., Dodge, R.K., Page, R.L., Cline, J.M., Lee, J., Case, B.C., Evans, S.M., Oleson, J.R. and Dewhirst, M.W. (1996) Radiation plus Local Hyperthermia versus Radiation plus the Combination of Local and Whole-Body Hyperthermia in Canine Sarcomas. International Journal of Radiation Oncology · Biology · Physics, 34, 1087-1096.
[115]  Szasz, O. and Szasz, A. (2016) Heating, Efficacy and Dose of Local Hyperthermia. Open Journal of Biophysics, 6, 10-18.
https://doi.org/10.4236/ojbiphy.2016.61002
[116]  Szasz, O. (2019) Bioelectromagnetic Paradigm of Cancer Treatment—Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 9, 98-109.
https://doi.org/10.4236/ojbiphy.2019.92008
[117]  Szasz, O. and Szasz, A. (2021) Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology. Open Journal of Biophysics, 11, 68-132.
https://doi.org/10.4236/ojbiphy.2021.111002
[118]  Kao, P.H.-J., Chen, C.-H., Chang, Y.-W., et al. (2020) Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Scientific Reports, 10, Article No. 8936.
https://www.nature.com/articles/s41598-020-65823-2
https://doi.org/10.1038/s41598-020-65823-2
[119]  Meggyeshazi, N., Andocs, G. and Krenacs, T. (2013) Programmed Cell Death Induced by Modulated Electro-Hyperthermia. Conference of the International Clinical Hyperthermia Society 2012, 2013, Article ID: 187835,
http://www.hindawi.com/archive/2013/187835/
[120]  Danics, L., Schvarcz, C.A.., Viana, P., et al. (2020) Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice. Cancers, 12, 2581.
https://pubmed.ncbi.nlm.nih.gov/32927720/
https://doi.org/10.3390/cancers12092581
[121]  Tsang, Y.-W., Huang, C.-C., Yang, K.-L., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, Article No. 708.
http://www.ncbi.nlm.nih.gov/pubmed/26472466
https://doi.org/10.1186/s12885-015-1690-2
[122]  Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Discovery, 2, Article No. 16039.
http://www.nature.com/articles/cddiscovery201639
https://doi.org/10.1038/cddiscovery.2016.39
[123]  Jeon, T.-W., Yang, H., Lee, C.G., Oh, S.T., et al. (2016) Electro-Hyperthermia Up-Regulates Tumour Suppressor Septin 4 to Induce Apoptotic Cell Death in Hepatocellular Carcinoma. International Journal of Hyperthermia, 32, 648-656.
https://doi.org/10.1080/02656736.2016.1186290
[124]  Vancsik, T., Andocs, G., Kovago, C., et al. (2015) Electro-Hyperthermia May Target Tumor-Cell Membranes. 33rd Annual Conference of International Clinical Hyperthermia Society (ICHS), Nidda, Germany, 11-13 July 2015.
[125]  Meggyeshazi, N. (2015) Studies on Modulated Electrohyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma Model. PhD Thesis, Semmelweis University, Budapest.
http://repo.lib.semmelweis.hu/handle/123456789/3956
[126]  Krenacs, T., Meggyeshazi, N., Forika, G., Kiss, E., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, 6270.
https://www.mdpi.com/1422-0067/21/17/6270
https://doi.org/10.3390/ijms21176270
[127]  Vancsik, T., Kovago, C., Kiss, E., et al. (2018) Modulated Electro-Hyperthermia Induced Loco-Regional and Systemic Tumor Destruction in Colorectal Cancer Allografts. Journal of Cancer, 9, 41-53.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743710/pdf/jcav09p0041.pdf
https://doi.org/10.7150/jca.21520
[128]  Biosca, J.A., Travers, F. and Barman, T.E. (1983) A Jump in an Arrhenius Plot Can Be the Consequence of a Phase Transition. The Binding of ATP to Myosin Subfragment 1. FEBS Letters, 153, 217-220.
https://doi.org/10.1016/0014-5793(83)80151-3
[129]  Hasegawa, T., Gu, Y.H., Takahashi, T., Hasegawa, T. and Yamamoto, I. (2001) Enhancement of Hyperthermic Effects Using Rapid Heating. In: Kosaka, M., Sugahara, T., Schmidt, K.L., et al., Eds., Thermotherapy for Neoplasia, Inflammation, and Pain, Springer Verlag, Tokyo, 439-444.
https://doi.org/10.1007/978-4-431-67035-3_49
[130]  Watson, K., Bertoli, E. and Griffiths, D.E. (1975) Phase Transitions in Yeast Mitochondrial Membranes. The Effect of Temperature on the Energies of Activation of the Respiratory Enzymes of Saccharomyces cerevisiae. Biochemical Journal, 146, 401-407.
https://doi.org/10.1042/bj1460401
[131]  Szigeti, G.P., Szasz, O. and Hegyi, G. (2016) Personalised Dosing of Hyperthermia. Journal of Cancer Diagnosis, 1, 107.
https://doi.org/10.4172/2476-2253.1000107
[132]  Rosenberg, S.M. and Queitsch, C. (2014) Combacting Evolution to Fight Disease. Science, 343, 1088-1089.
https://doi.org/10.1126/science.1247472
[133]  Szasz, A. (2020) Towards the Immunogenic Hyperthermic Action: Modulated Electro-Hyperthermia. Clinical Oncology and Research, 3, 1-6.
https://www.sciencerepository.org/towards-the-immunogenic-hyperthermic-action-modulated-electro-hyperthermia_COR-2020-9-107
https://doi.org/10.31487/j.COR.2020.09.07
[134]  Szasz, O. (2020) Local Treatment with Systemic Effect: Abscopal Outcome. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 11, Cambridge Scholars Publishing, Newcastle upon Tyne, 192-205.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[135]  Palekar-Shanbhag, P., Jog, S.V., Chogale, M.M. and Gaikwad, S.S. (2013) Theranostics for Cancer Therapy. Current Drug Delivery, 10, 357-362.
https://doi.org/10.2174/1567201811310030013
[136]  Lee, S.-Y., Lee, N.-R., Cho, D.-H., et al. (2017) Treatment Outcome Analysis of Chemotherapy Combined with Modulated Electro-Hyperthermia Compared with Chemotherapy Alone for Recurrent Cervical Cancer, Following Irradiation. Oncology Letters, 14, 73-78.
https://doi.org/10.3892/ol.2017.6117
[137]  Iyikesici, M.S., Slocum, A.K., Slocum, A., et al. (2017) Efficacy of Metabolically Supported Chemotherapy Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy for Stage IV Triple-Negative Breast Cancer. Cureus, 9, e1445. https://doi.org/10.7759/cureus.1445
[138]  Yeo, S.-G. (2015) Definitive Radiotherapy with Concurrent Oncothermia for Stage IIIB Non-Small-Cell Lung Cancer: A Case Report. Experimental and Therapeutic Medicine, 10, 769-772.
https://doi.org/10.3892/etm.2015.2567
[139]  Pesti, L., Dankovics, Z., Lorencz, P., et al. (2013) Treatment of Advanced Cervical Cancer with Complex Chemoradio-Hyperthermia. Conference of the International Clinical Hyperthermia Society 2012, 2013, Article ID: 192435.
https://doi.org/10.1155/2013/192435
[140]  Kleef, R., Kekic, S. and Ludwig, N. (2012) Successful Treatment of Advanced Ovarian Cancer with Thermochemotherapy and Adjuvant Immune Therapy. Case Reports in Oncology, 5, 212-215.
https://doi.org/10.1159/000338617
[141]  Schirrmacher, V., Bihari, A.-S., Stücker, W., et al. (2014) Long-Term Remission of Prostate Cancer with Extensive Bone Metastases upon Immuno- and Virotherapy: A Case Report. Oncology Letters, 8, 2403-2406.
https://doi.org/10.3892/ol.2014.2588
[142]  Van Gool, S.W., Makalowski, J., Feyen, O., Prix, L., Schirrmacher, V. and Stuecker, W. (2018) The Induction of Immunogenic Cell Death (ICD) during Maintenance Chemotherapy and Subsequent Multimodal Immunotherapy for Glioblastoma (GBM). Austin Oncology Case Reports, 3, 1010.
[143]  Szasz, A.M., Minnaar, C.A., Szentmartoni, G., et al. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article 1012.
https://www.frontiersin.org/articles/10.3389/fonc.2019.01012/full
https://doi.org/10.3389/fonc.2019.01012
[144]  Wismeth, C., Dudel, C., Pascher, C., et al. (2010) Transcranial Electro-Hyperthermia Combined with Alkylating Chemotherapy in Patients with Relapsed High-Grade Gliomas—Phase I Clinical Results. Journal of Neuro-Oncology, 98, 395-405.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Transcranial+electro-hyperthermia+combined+with+alkylating+chemotherapy+in+patients+with+relapsed+high-grade+gliomas+%E2%80%93+Phase+I+clinical+results
https://doi.org/10.1007/s11060-009-0093-0
[145]  Fiorentini, G., Giovanis, P., Rossi, S., et al. (2006) A Phase II Clinical Study on Relapsed Malignant Gliomas Treated with Electro-Hyperthermia. In Vivo, 20, 721-724.
https://www.ncbi.nlm.nih.gov/pubmed/17203754
[146]  Fiorentini, G. and Casadei, V. (2018) Modulated Electro-Hyperthermia (mEHT) in Integrative Cancer Treatment for Relapased Malignant Gliobastroma and Astrocytoma: A Retrospective Multicenter Controlled Study. Oncothermia Journal, 24, 464-481.
https://oncotherm.com/sites/oncotherm/files/2018-10/Modulated_electro_hyperthermia_%28mEHT%29_in_integrative_cancer_treatment.pdf
[147]  Sahinbas, H., Groenemeyer, D.H.W., Boecher, E. and Szasz, A. (2007) Retrospective Clinical Study of Adjuvant Electro-Hyperthermia Treatment for Advanced Brain-Gliomas. Deutsche Zeitschrift für Onkologie, 39, 154-160.
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2007-986020
https://doi.org/10.1055/s-2007-986020
[148]  Hager, E.D., Sahinbas, H., Groenemeyer, D.H., et al. (2008) Prospective Phase II Trial for Recurrent High-Grade Malignant Gliomas with Capacitive Coupled Low Radiofrequency (LRF) Deep Hyperthermia. Journal of Clinical Oncology, 26, 2047.
https://ascopubs.org/doi/abs/10.1200/jco.2008.26.15_suppl.2047
https://doi.org/10.1200/jco.2008.26.15_suppl.2047
[149]  Fiorentini, G., Sarti, D., Milandri, C., et al. (2018) Modulated Electrohyperthermia in Integrative Cancer Treatment for Relapsed Malignant Glioblastoma and Astrocytoma: Retrospective Multicenter Controlled Study. Integrative Cancer Therapies, 18.
https://www.ncbi.nlm.nih.gov/pubmed/30580645
https://doi.org/10.1177/1534735418812691
[150]  Gadaleta-Caldarola, G., Infusino, S., Galise, I., et al. (2014) Sorafenib and Locoregional Deep Electro-Hyperthermia in Advanced Hepatocellular Carcinoma. A Phase II Study. Oncology Letters, 8, 1783-1787.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156230/
https://doi.org/10.3892/ol.2014.2376
[151]  Ferrari, V.D., De Ponti, S., Valcamonico, F., et al. (2007) Deep Electro-Hyperthermia (EHY) with or without Thermo-Active Agents in Patients with Advanced Hepatic Cell Carcinoma: Phase II Study. Journal of Clinical Oncology, 25, Article ID: 15168.
http://ascopubs.org/doi/abs/10.1200/jco.2007.25.18_suppl.15168
https://doi.org/10.1200/jco.2007.25.18_suppl.15168
[152]  Lee, D.-J., Haam, S.-J., Kim, T.-H., et al. (2013) Oncothermia with Chemotherapy in the Patients with Small-Cell Lung Cancer. Conference of the International Clinical Hyperthermia Society 2012, 2013, Article ID: 910363.
http://www.hindawi.com/archive/2013/910363/
https://doi.org/10.1155/2013/910363
[153]  Minnaar, C., Baeyens, A. and Kotzen, J. (2016) Update on Phase III Randomized Clinical Trial Investigating the Effects of the Addition of Electro-Hyperthermia to Chemoradiotherapy for Cervical Cancer Patients in South Africa. Physica Medica, 32, 151-152.
http://www.physicamedica.com/article/S1120-1797(16)30175-2/abstract
https://doi.org/10.1016/j.ejmp.2016.07.042
[154]  Lee, S.-Y., Kim, J.-H., Han, Y.-H., et al. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. International Journal of Hyperthermia, 34, 953-960.
https://doi.org/10.1080/02656736.2018.1423709
[155]  Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Frontiers in Oncology, 10, 376.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105641/
https://doi.org/10.3389/fonc.2020.00376
[156]  Minnaar, C.A., Kotzen, J.A., Naidoo, T., et al. (2020) Analysis of the Effects of mEHT on the Treatment-Related Toxicity and Quality of Life of HIV-Positive Cervical Cancer Patients. International Journal of Hyperthermia 37, 263-227.
https://www.ncbi.nlm.nih.gov/pubmed/32180481
https://doi.org/10.1080/02656736.2020.1737253
[157]  Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2019) The Effect of Modulated Electro-Hyperthermia on Local Disease Control in HIV-Positive and -Negative Cervical Cancer Women in South Africa: Early Results from a Phase III Randomized Controlled Trial. PLoS ONE, 14, e0217894.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584021/
https://doi.org/10.1371/journal.pone.0217894
[158]  Ou, J., Zhu, X., Lu, Y., et al. (2017) The Safety and Pharmacokinetics of High Dose Intravenous Ascorbic Acid Synergy with Modulated Electrohyperthermia in Chinese Patients with Stage III-IV Non-Small Cell Lung Cancer. European Journal of Pharmaceutical Sciences, 109, 412-418.
http://www.sciencedirect.com/science/article/pii/S0928098717304554?via%3Dihub
https://doi.org/10.1016/j.ejps.2017.08.011
[159]  Ou, J., Zhu, X., Chen, P., et al. (2020) A Randomized Phase II Trial of Best Supportive Care with or without Hyperthermia and Vitamin C for Heavily Pretreated, Advanced, Refractory Non-Small-Cell Lung Cancer. Journal of Advanced Research, 24, 175-182.
https://www.ncbi.nlm.nih.gov/pubmed/32368355
https://doi.org/10.1016/j.jare.2020.03.004
[160]  Szasz, A. (2014) Current Status of Oncothermia Therapy for Lung Cancer. Korean Journal of Thoracic and Cardiovascular Surgery, 47, 77-93.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000888
https://doi.org/10.5090/kjtcs.2014.47.2.77
[161]  Iyikesici, M.S. (2019) Feasibility Study of Metabolically Supported Chemotherapy with Weekly Carboplatin/Paclitaxel Combined with Ketogenic Diet, Hyperthermia and Hyperbaric Oxygen Therapy in Metastatic Non-Small Cell Lung Cancer. International Journal of Hyperthermia, 36, 445-454.
https://www.ncbi.nlm.nih.gov/pubmed/30931666
https://doi.org/10.1080/02656736.2019.1589584
[162]  Pang, C.L.K., Zhang, X., Wang, Z., Ou, J.W., et al. (2017) Local Modulated Electro-Hyperthermia in Combination with Traditional Chinese Medicine vs. Intraperitoneal Chemoinfusion for the Treatment of Peritoneal Carcinomatosis with Malignant Ascites: A Phase II Randomized Trial. Molecular and Clinical Oncology, 6, 723-732.
https://pubmed.ncbi.nlm.nih.gov/28529748/
https://doi.org/10.3892/mco.2017.1221
[163]  You, S.H. and Kim, S. (2019) Feasibility of Modulated Electro-Hyperthermia in Preoperative Treatment for Locally-Advanced Rectal Cancer: Early Phase 2 Clinical Results. Neoplasma, 67, 677-683.
https://www.ncbi.nlm.nih.gov/pubmed/32039629
https://doi.org/10.4149/neo_2020_190623N538
[164]  Hager, E.D., Dziambor, H., Höhmann, D., et al. (1999) Deep Hyperthermia with Radiofrequencies in Patients with Liver Metastases from Colorectal Cancer. Anticancer Research, 19, 3403-3408.
http://www.ncbi.nlm.nih.gov/pubmed/10629627
[165]  Jeung, T.-S., Ma, S.-Y., Choi, J., et al. (2015) Results of Oncothermia Combined with Operation, Chemotherapy and Radiation Therapy for Primary, Recurrent and Metastatic Sarcoma. Case Reports in Clinical Medicine, 4, 157-168.
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56280
https://doi.org/10.4236/crcm.2015.45033
[166]  Volovat, C., Volovat, S.R., Scripcaru, V., et al. (2014) The Results of Combination of Ifosfamid and Locoregional Hyperthermia (EHY 2000) in Patients with Advanced Abdominal Soft-Tissue Sarcoma after Relapse of First Line Chemotherapy. Romanian Reports in Physics, 66, 175-181.
http://www.rrp.infim.ro/2014_66_1/A19.pdf
[167]  Iyikesici, M.S. (2020) Long-Term Survival Outcomes of Metabolically Supported Chemotherapy with Gemcitabine-Based or FOLFIRINOX Regimen Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy in Metastatic Pancreatic Cancer. Complementary Medicine Research, 27, 31-39.
https://www.ncbi.nlm.nih.gov/pubmed/31527373
https://doi.org/10.1159/000502135
[168]  Volovat, C., Volovat, S.R., Scripcaru, V., et al. (2014) Second-Line Chemotherapy with Gemcitabine and Oxaliplatin in Combination with Loco-Regional Hyperthermia (EHY-2000) in Patients with Refractory Metastatic Pancreatic Cancer—Preliminary Results of a Prospective Trial. Romanian Reports in Physics, 66, 166-174.
http://www.rrp.infim.ro/2014_66_1/A18.pdf
[169]  Fiorentini, G., Sarti, D., Casadei, V., et al. (2019) Modulated Electro-Hyperthermia as Palliative Treatment for Pancreas Cancer: A Retrospective Observational Study on 106 Patients. Integrative Cancer Therapies, 18, 1-8.
https://journals.sagepub.com/doi/pdf/10.1177/1534735419878505
https://doi.org/10.1177/1534735419878505
[170]  Hager, E.D., Süsse, B., Popa, C., et al. (1994) Complex Therapy of the Not in Sano Resectable Carcinoma of the Pancreas—A Pilot Study. Journal of Cancer Research and Clinical Oncology, 120, R47.
[171]  Dani, A., Varkonyi, A., Magyar, T. and Szasz, A. (2008) Clinical Study for Advanced Pancreas Cancer Treated by Oncothermia. Forum Hyperthermie, 1, 13-20.
http://www.pyatthealth.com/wp-content/uploads/2015/03/Hyperthermia-Pancreatic-Cancer.pdf
[172]  Ranieri, G., Ferrari, C., Di Palo, A., et al. (2017) Bevacizumab-Based Chemotherapy Combined with, Regional Deep Capacitive Hyperthermia in Metastatic Cancer Patients: A Pilot Study. International Journal of Molecular Sciences, 18, 1458.
https://www.ncbi.nlm.nih.gov/pubmed/28684680
https://doi.org/10.3390/ijms18071458
[173]  Chi, M.-S., Mehta, M.P., Yang, K.-L., et al. (2020) Putative Abscopal Effect in Three Patients Treated by Combined Radiotherapy and Modulated Electrohyperthermia. Frontiers in Oncology, 10, 254.
https://www.frontiersin.org/articles/10.3389/fonc.2020.00254/full
https://doi.org/10.3389/fonc.2020.00254
[174]  Iyikesici, M.S. (2020) Survival Outcomes of Metabolically Supported Chemotherapy Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy in Advanced Gastric Cancer. Nigerian Journal of Clinical Practice, 23, 734-740.
https://www.ncbi.nlm.nih.gov/pubmed/32367884
https://doi.org/10.25000/acem.650341
[175]  Fiorentini, G., Sarti, D., Gadaleta, C.D., et al. (2020) A Narrative Review of Regional Hyperthermia: Updates from 2010-2019. Integrative Cancer Therapies, 19, 1-13.
https://pubmed.ncbi.nlm.nih.gov/33054425/
https://doi.org/10.1177/1534735420932648
[176]  Van Gool, S.W., Makalowski, J., Fiore, S., et al. (2021) Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers, 13, 32.
https://pubmed.ncbi.nlm.nih.gov/33374196/
https://doi.org/10.3390/cancers13010032
[177]  Kim, S., Lee, J.H., Cha, J. and You, S.H. (2021) Beneficial Effects of Modulated Electro-Hyperthermia during Neoadjuvant Treatment for Locally Advanced Rectal Cancer. International Journal of Hyperthermia, 38, 144-151.
https://pubmed.ncbi.nlm.nih.gov/33557636/
https://doi.org/10.1080/02656736.2021.1877837
[178]  Fiorentini, G., Sarti, D., Casadei, V., et al. (2020) Modulated Electro-Hyperthermia for the Treatment of Relapsed Brain Gliomas. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 6, Cambridge Scholars Publishing, Newcastle upon Tyne, 110-125.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[179]  Garay, T., Kiss, E., Szentmartoni, G., et al. (2020) Gastrointestinal Cancer Series Treated with Modulated Electro-Hyperthermia (mEHT)—A Single Centre Experience In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 8, Cambridge Scholars Publishing, Newcastle upon Tyne, 159-162.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[180]  Wookyeom, Y., Han, G.H., Shin, H.-Y., et al. (2018) Combined Treatment with Modulated Electro-Hyperthermia and an Autophagy Inhibitor Effectively Inhibit Ovarian and Cervical Cancer Growth. International Journal of Hyperthermia, 36, 9-20.
https://doi.org/10.1080/02656736.2018.1528390
[181]  Szasz, A.M., Szentmartoni, G., Garay, T., et al. (2020) Breast Cancer Series Treated with Modulated Electro-Hyperthermia (mEHT)—A Single Centre Experience. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 5, Cambridge Scholars Publishing, Newcastle upon Tyne, 105-109,
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[182]  Lee, Y. (2013) Oncothermia Application for Various Malignant Diseases. Conference of the International Clinical Hyperthermia Society 2012, 2013, Article ID: 245156.
http://www.hindawi.com/archive/2013/245156/
https://doi.org/10.1155/2013/245156
[183]  Parmar, G., Rurak, E., Elderfield, M., et al. (2020) 8-Year Observational Study on Naturopathic Treatment with Modulated Electro-Hyperthermia (mEHT): A Single-Centre Experience. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 13, Cambridge Scholars Publishing, Newcastle upon Tyne, 227-266.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[184]  Arrojo, E.E. (2020) The Position of Modulated Electro-Hyperthermia (Oncothermia) in Combination with Standard Chemo- and Radiotherapy in Clinical Practice—Highlights of Upcoming Phase III Clinical Studies in Hospital Universitario Marqués de Valdecilla (HUMV). In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 4, Cambridge Scholars Publishing, Newcastle upon Tyne, 91-104.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[185]  Roussakow, S. (2017) Clinical and Economic Evaluation of Modulated Electrohyperthermia Concurrent to Dose-Dense Temozolomide 21/28 Days Regimen in the Treatment of Recurrent Glioblastoma: A Retrospective Analysis of a Two-Centre German Cohort Trial with Systematic Comparison and Effect-to-Treatment Analysis. BMJ Open, 7, e017387.
http://bmjopen.bmj.com/content/bmjopen/7/11/e017387.full.pdf
https://doi.org/10.1136/bmjopen-2017-017387

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133