全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Smooth Periodic Solutions with Equal Period for KP-MEW (2,2) Equation

DOI: 10.4236/jamp.2021.97103, PP. 1515-1521

Keywords: KP-MEW(2,2) Equation, Abelian Integral, Picard-Fuchs Equation, Equal Period

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the KP-MEW(2,2) equation is considered under a certain parametric condition. We prove that the equation has two isochronous centers under certain parametric conditions, and there exist two families of periodic solutions with equal period.

References

[1]  Korteweg, D.J. and Vries, G.D. (1895) On the Change of Form of Long Waves Advancing in a Rectangular Channel, and a New Type of Long Stationary Waves. Philosophical Magazine, 39, 422-443.
https://doi.org/10.1080/14786449508620739
[2]  Kadomtsev, B.B. and Petviashvili, V.I. (1974) On the Stability of Solitary Waves in Weakly Dispersive Media. Soviet Physics—JETP, 39, 285-295.
[3]  Esen, A. (2006) A Lumped Galerkin Method for the Numerical Solution of the Modified Equal-Width Equation Using Quadratic B-Splines. International Journal of Computer Mathematics, 83, 449-459.
https://doi.org/10.1080/00207160600909918
[4]  Esen, A. and Kutluay, S. (2008) Solitary Wave Solutions of the Modified Equal Width Wave Equation. Communications in Nonlinear Science and Numerical Simulation, 13, 1538-1546.
https://doi.org/10.1016/j.cnsns.2006.09.018
[5]  Wazwaz, A.M. (2005) The Tanh Method and the Sine-Cosine Method for Solving the KP-MEW Equation. International Journal of Computer Mathematics, 82, 235-246.
https://doi.org/10.1080/00207160412331296706
[6]  Saha, A. (2012) Bifurcation of Travelling Wave Solutions for the Generalized KP-MEW Equations. Communications in Nonlinear Science and Numerical Simulation, 17, 3539-3551.
https://doi.org/10.1016/j.cnsns.2012.01.005
[7]  Li, J.B. (2013) Singular Nonlinear Traveling Wave Equations: Bifurcation and Exact Solutions. Science, Beijing.
[8]  Li, S.Y. and Song, M. (2014) Compacton-Like Wave and Kink-Like Wave Solutions of the Generalized KP-MEW (2, 2) Equation. Physica Scripta, 89, Article ID: 035202.
https://doi.org/10.1088/0031-8949/89/03/035202
[9]  Wei, M.Z., Tang, S.Q., Fu, H.L. and Chen, G.X. (2013) Single Peak Solitary Wave Solutions for the Generalized KP-MEW (2,2) Equation under Boundary Condition. Applied Mathematics and Computation, 219, 8979-8990.
https://doi.org/10.1016/j.amc.2013.03.007
[10]  Chen, A.Y., Tian, C.X. and Huang, W.T. (2018) Periodic Solutions with Equal Period for the Friedmann-Robertson-Walker Model. Applied Mathematics Letters, 77, 101-107.
https://doi.org/10.1016/j.aml.2017.10.007
[11]  Chen, A.Y., He, X.K. and Tian, C.X. (2019) Isochronous Cosmological Solutions of the Friedmann Robertson Walker Model. Modern Physics Letters A, 11, Article ID: 1950062.
https://doi.org/10.1142/S0217732319500627
[12]  Yan, W.F., Liu, Z.R. and Liang, Y. (2014) Existence of Solitary Waves and Periodic Waves to a Perturbed Generalized KdV Equation. Mathematical Modelling and Analysis, 4, 537-555.
https://doi.org/10.3846/13926292.2014.960016
[13]  Zhao, Y.L. (2005) On the Monotonicity of the Period Function of a Quadratic System. Discrete and Continuous Dynamical Systems Journal, 13, 795-810.
https://doi.org/10.3934/dcds.2005.13.795

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133