The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability of the explicit singular solution of Camassa-Holm equation.
References
[1]
Camassa, R. and Holm, D.D. (1993) An Integrable Shallow Water Equation with Peaked Solitons. Physical Review Letters, 71, 1661-1664. https://doi.org/10.1103/PhysRevLett.71.1661
[2]
Bressan, A. and Constantin, A. (2007) Global Conservative Solutions of the Camassa-Holm Equation. Archive for Rational Mechanics and Analysis, 183, 215-239. https://doi.org/10.1007/s00205-006-0010-z
[3]
Bressan, A. and Constantin, A. (2007) Global Dissipative Solutions of the Camassa-Holm Equation. Analysis and Applications, 5, 1-27. https://doi.org/10.1142/S0219530507000857
[4]
Constantin, A. (1997) On the Cauchy Problem for the Periodic Camassa-Holm Equation. Journal of Differential Equations, 141, 218-235. https://doi.org/10.1006/jdeq.1997.3333
[5]
Constantin, A. (1997) The Hamiltonian Structure of the Camassa-Holm Equation. Expositiones Mathematicae, 15, 53-85.
[6]
Constantin, A. and Escher, J. (1998) Global Existence and Blow-up for a Shallow Water Equation. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 26, 303-328.
[7]
Constantin, A. (2001) On the Scattering Problem for the Camassa-Holm Equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 457, 953-970. https://doi.org/10.1098/rspa.2000.0701
[8]
Constantin, A. and Molinet, L. (2000) Global Weak Solutions for a Shallow Water Equation. Communications in Mathematical Physics, 211, 45-61. https://doi.org/10.1007/s002200050801
[9]
Constantin, A. and Lannes, D. (2009) The Hydrodynamical Relevance of the Camassa-Holm and Degasperis-Procesi Equations. Archive for Rational Mechanics and Analysis, 192, 165-186. https://doi.org/10.1007/s00205-008-0128-2
[10]
Bendahmane, M., Coclite, G.M. and Karlsen, K.H. (2006) H1-Perturbations of Smooth Solutions for a Weakly Dissipative Hyperelastic-Rod Wave Equation. Mediterranean Journal of Mathematics, 3, 419-432. https://doi.org/10.1007/s00009-006-0088-4
[11]
Brandolese, L. (2014) Local-in-Space Criteria for Blowup in Shallow Water and Dispersive Rod Equations. Communications in Mathematical Physics, 330, 401-414. https://doi.org/10.1007/s00220-014-1958-4
[12]
Constantin, A. (2000) Existence of Permanent and Breaking Waves for a Shallow Water Equation: A Geometric Approach. Annales de l’Institut Fourier, 50, 321-362. https://doi.org/10.5802/aif.1757
[13]
Constantin, A. and Escher, J. (1998) Wave Breaking for Nonlinear Nonlocal Shallow Water Equations. Acta Mathematica, 181, 229-243. https://doi.org/10.1007/BF02392586
[14]
Liu, Y. (2006) Global Existence and Blow-Up Solutions for a Nonlinear Shallow Water Equation. Mathematische Annalen, 335, 717-735. https://doi.org/10.1007/s00208-006-0768-1
[15]
McKean, H.P. (2004) Breakdown of the Camassa-Holm Equation. Communications on Pure and Applied Mathematics, 57, 416-418. https://doi.org/10.1002/cpa.20003
[16]
Constantin, A. and Strauss, W. (2002) Stability of the Camassa-Holm Solitons. Journal of Nonlinear Science, 12, 415-422. https://doi.org/10.1007/s00332-002-0517-x
[17]
Constantin, A. and Molinet, L. (2001) Orbital Stability of Solitary Waves for a Shallow Water Equation. Physica D: Nonlinear Phenomena, 157, 75-89. https://doi.org/10.1016/S0167-2789(01)00298-6
[18]
Constantin, A. and Strauss, W. (2000) Stability of a Class of Solitary Waves in Compressible Elastic Rods. Physics Letters A, 270, 140-148. https://doi.org/10.1016/S0375-9601(00)00255-3
[19]
Hakkaev, S. and Kirchev, K. (2005) Local Well-Posedness and Orbital Stability of Solitary Wave Solutions for the Generalized Camassa-Holm Equation. Communications in Partial Differential Equations, 30, 761-781. https://doi.org/10.1081/PDE-200059284
[20]
Gao, Y. and Chen, J. (2021) Asymptotic Stability of Singular Waves for Dullin-Gottwald-Holm Equation. (Submitted)
[21]
Kato, T. (1975) Quasi-Linear Equations of Evolution, with Applications to Partial Differential Equations. In: Everitt, W.N., Ed., Spectral Theory and Differential Equations, Vol. 448, Springer, Berlin, Heidelberg, 25-70. https://doi.org/10.1007/BFb0067080
[22]
Evans, L.C. (1998) Partial Differential Equations (Graduate Studies in Mathematics, Vol. 19). American Mathematical Society, Providence, xviii+662 p.
[23]
Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44. Springer-Verlag, New York, viii+279 p. https://doi.org/10.1007/978-1-4612-5561-1