With significant appraisals to the Original Double-Slit experiment, an audit of nature of electron is drafted. Electron has been proven to demonstrate unpredictable nature. It should behave as a particle, but it shows variations in behaviour when it is passed through two slits. In the experiment, photons (high-intensity light) are utilized as a detector, due to which interference pattern effectuates after detection. The wave-function is collapsed. A contemporary model is proposed, in which magnetic field of low-intensity is applied to canvass ever-changing nature of electron.
References
[1]
Jönsson, C. (1961) Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift für Physik, 161, 454-474. https://doi.org/10.1007/BF01342460
[2]
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. and Ezawa, H. (1989) Demonstration of Single-Electron Buildup of an Interference Pattern. American Journal of Physics, 57, 117-120. https://doi.org/10.1119/1.16104
[3]
Bach, R., Pope, D., Liou, S.H. and Batelaan, H. (2013) Controlled Double-Slit Electron Diffraction. New Journal of Physics, 15, Article ID: 033018. https://doi.org/10.1088/1367-2630/15/3/033018
[4]
Frabboni, S., Gabrielli, A., Gazzadi, G.C., Giorgi, F., Matteucci, G., Pozzi, G., Zoccoli, A., et al. (2012) The Young-Feynman Two-Slits Experiment with Single Electrons: Build-Up of the Interference Pattern and Arrival-Time Distribution Using a Fast-Readout Pixel Detector. Ultramicroscopy, 116, 73-76. https://doi.org/10.1016/j.ultramic.2012.03.017
[5]
Muhammad, S. and Omama, M. (2020) A New Approach to Duality of Electron. Energy, 14, 16.
[6]
Zou, X.Y., Wang, L.J. and Mandel, L. (1991) Induced Coherence and in Distinguish Ability in Optical Interference. Physical Review Letters, 67, 318-321. https://doi.org/10.1103/PhysRevLett.67.318
[7]
Buks, E., Schuster, R., Heiblum, M., Mahalu, D. and Umansky, V. (1998) Dephasing in Electron Interference by a “Which-Path” Detector. Nature, 391, 871-874. https://doi.org/10.1038/36057
[8]
Neder, I., Marquardt, F., Heiblum, M., Mahalu, D. and Umansky, V. (2007) Controlled Dephasing of Electrons by Non-Gaussian Shot Noise. Nature Physics, 3, 534-537. https://doi.org/10.1038/nphys627
[9]
Zel’Dovich, Y.B. (1975) Interaction of Free Electrons with Electromagnetic Radiation. Soviet Physics Uspekhi, 18, 79. https://doi.org/10.1070/PU1975v018n02ABEH001947
[10]
De Broglie, L. (1923) Waves and Quanta. Nature, 112, 540. https://doi.org/10.1038/112540a0
[11]
Williams, B. (1977) Compton Scattering: The Investigation of Electron Momentum Distributions.
[12]
Pratt, R.H., Ron, A. and Tseng, H.K. (1973) Atomic Photoelectric Effect above 10 keV. Reviews of Modern Physics, 45, 273-325. https://doi.org/10.1103/RevModPhys.45.273
[13]
Colladay, D., McDonald, P. and Potting, R. (2014) Gupta-Bleuler Photon Quantization in the Standard Model Extension. Physical Review D, 89, Article ID: 085014. https://doi.org/10.1103/PhysRevD.89.085014
[14]
Bassi, A., Lochan, K., Satin, S., Singh, T.P. and Ulbricht, H. (2013) Models of Wave-Function Collapse, Underlying Theories, and Experimental Tests. Reviews of Modern Physics, 85, 471-527. https://doi.org/10.1103/RevModPhys.85.471
[15]
Namiki, M. and Pascazio, S. (1991) Wave-Function Collapse by Measurement and Its Simulation. Physical Review A, 44, 39-53. https://doi.org/10.1103/PhysRevA.44.39
[16]
Tomihari, Y. (1998) U.S. Patent No. 5,719,477. U.S. Patent and Trademark Office, Washington DC.
[17]
Jang, Y.T., Lee, Y.H., Ju, B.K., Ahn, J.H., Go, C.K. and Park, G.S. (2002) Application of Carbon Nanotubes to the Cathode Ray Tube-Electron Gun. Vacuum, 68, 79-85. https://doi.org/10.1016/S0042-207X(02)00290-7
[18]
Herring, C. and Nichols, M.H. (1949) Thermionic Emission. Reviews of Modern Physics, 21, 185-270. https://doi.org/10.1103/RevModPhys.21.185
[19]
Nottingham, W.B. (1956) Thermionic Emission. In: Electron-Emission Gas Discharges I/Elektronen-Emission Gasentladungen I, Springer, Berlin, 1-175. https://doi.org/10.1007/978-3-642-45844-6_1
[20]
Crewe, A.V., Eggenberger, D.N., Wall, J. and Welter, L.M. (1968) Electron Gun Using a Field Emission Source. Review of Scientific Instruments, 39, 576-583. https://doi.org/10.1063/1.1683435
[21]
Westenskow, G.A. and Madey, J.M.J. (1984) Microwave Electron Gun. Laser and Particle Beams, 2, 223-225. https://doi.org/10.1017/S0263034600000781
[22]
Allen, M.D. and Raabe, O.G. (1985) Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus. Aerosol Science and Technology, 4, 269-286. https://doi.org/10.1080/02786828508959055
[23]
Mohr, P.J. and Taylor, B.N. (2005) CODATA Recommended Values of the Fundamental Physical Constants: 2002. Reviews of Modern Physics, 77, 1. https://doi.org/10.1103/RevModPhys.77.1
[24]
Farnham, D.L., Van Dyck Jr., R.S. and Schwinberg, P.B. (1995) Determination of the Electron’s Atomic Mass and the Proton/Electron Mass Ratio via Penning Trap Mass Spectroscopy. Physical Review Letters, 75, 3598-3601. https://doi.org/10.1103/PhysRevLett.75.3598
[25]
Gainutdinov, R.K., Khamadeev, M.A. and Salakhov, M.K. (2012) Electron Rest Mass and Energy Levels of Atoms in the Photonic Crystal Medium. Physical Review A, 85, Article ID: 053836. https://doi.org/10.1103/PhysRevA.85.053836
[26]
Sukhoruchkin, S. (2017) Confirmation of the Discreteness in Particle Masses and the SM Parameters. Nuclear and Particle Physics Proceedings, 282, 189-193. https://doi.org/10.1016/j.nuclphysbps.2016.12.036