全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Positive Periodic Solutions of Nonautonomous Delayed Predator-Prey System with Pulse Controls

DOI: 10.4236/jamp.2021.97098, PP. 1452-1467

Keywords: Positive Periodic Solution, Predator-Prey, Impulses, Delays, Continuation Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, a biological model for two predators and one prey with impulses and periodic delays is considered. By assuming that one predator consumes prey according to Holling II functional response while the other predators consume prey according to the Beddington-DeAngelis functional response, based on the coincidence degree theory, the existence of positive periodic solutions of nonautonomous predator-prey system with impulses and periodic delays is obtained under suitable conditions.

References

[1]  Rihan, F.A., Lakshmanan, S., Hashish, A.H., Rakkiyappan, R. and Ahmed, E. (2015) Fractional-Order Delayed Predator-Prey Systems with Holling Type-II Functional Response. Nonlinear Dynamics, 80, 777-789.
https://doi.org/10.1007/s11071-015-1905-8
[2]  El-Saka, H.A.A., Lee, S. and Jang, B. (2019) Dynamic Analysis of Fractional-Order Predator-Prey Biological Economic System with Holling Type II Functional Response. Nonlinear Dynamics, 96, 407-416.
https://doi.org/10.1007/s11071-019-04796-y
[3]  Du, Y., Niu, B. and Wei, J. (2019) Two Delays Induce Hopf Bifurcation and Double Hopf Bifurcation in a Diffusive Leslie-Gower Predator-Prey System. Chaos, 29, Article ID: 013101.
https://doi.org/10.1063/1.5078814
[4]  Lotka, A. (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore.
[5]  Volterra, V. (1926) Variazioni e fluttuaziono del numero di individui in specie animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei, 2, 31-113.
[6]  Liu, W., Xiao, D. and Yi, Y. (2003) Relaxation Oscillations in a Class of Predator Prey Systems. Journal of Differential Equations, 188, 306-331.
https://doi.org/10.1016/S0022-0396(02)00076-1
[7]  Lin, G. and Hong, Y. (2009) Periodic Solutions in Non Autonomous Predator Prey System with Delays. Nonlinear Analysis: Real World Applications, 10, 1589-1600.
https://doi.org/10.1016/j.nonrwa.2008.02.003
[8]  Kuang, Y. (1993) Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston.
[9]  Li, Y. and Kuang, Y. (2001) Periodic Solutions of Periodic Delay Lotka-Volterra Equations and Systems. Journal of Mathematical Analysis and Applications, 255, 260-280.
https://doi.org/10.1006/jmaa.2000.7248
[10]  Zhao, T., Kuang, Y. and Smith, H.L. (1997) Global Existence of Periodic Solutions in a Class of Delayed Gause-Type Predator-Prey Systems. Nonlinear Analysis: Real World Applications, 28, 1373-1394.
https://doi.org/10.1016/0362-546X(95)00230-S
[11]  Kar, T. and Pahari, U. (2007) Modelling and analysis of a prey-predator system with stage-structure and harvesting, Nonlinear Analysis: Real World Applications, 8, 601-609.
https://doi.org/10.1016/j.nonrwa.2006.01.004
[12]  Song, Y. and Yuan, S. (2006) Bifurcation Analysis in a Predator-Prey System with Time Delay. Nonlinear Analysis: Real World Applications, 7, 265-284.
https://doi.org/10.1016/j.nonrwa.2005.03.002
[13]  Xiao, D. and Ruan, S. (2001) Multiple Bifurcations in a Delayed Predator-Prey System with Nonmonotonic Functional Response. Journal of Differential Equations, 176, 494-510.
https://doi.org/10.1006/jdeq.2000.3982
[14]  Jones, C. (1995) Geometric Singular Perturbation Theory. In: Dynamical Systems, Lecture Notes in Math, Vol. 1609, Springer-Verlag, Berlin, 44-120.
https://doi.org/10.1007/BFb0095239
[15]  Lin, G. and Yuan, R. (2005) Periodic Solution for a Predator-Prey System with Distributed Delay. Mathematical and Computer Modelling, 42, 959-966.
https://doi.org/10.1016/j.mcm.2005.05.015
[16]  Lin, G. and Yuan, R. (2006) Periodic Solutions for Equations with Distributed Delays. Proceedings of the Royal Society of Edinburgh Section A, 136, 1317-1325.
https://doi.org/10.1017/S030821050000500X
[17]  Bainov, D. and Simeonov, P. (1993) Impulsive Differential Equations: Periodic Solutions and Applications. Monographs and Surveys in Pure and Applied Mathematics, Vol. 66, Routledge, London.
[18]  Gaines, R. and Mawhin, J. (1977) Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin.
https://doi.org/10.1007/BFb0089537

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133