Photovoltaic cells are generally manufactured under
standard test conditions. The operating
conditions, very often induce performance losses different from those
initially given by the manufacturer. This article presents an experimental
acquisition and analysis system that integrates the synthetic efficiency ratio (SER) as a hybrid analysis tool to evaluate
the performance of a monocrystallinephotovoltaic
solar panel, in this case the LW-MS90 panel in the city of Douala. The
meteorological data obtained experimentally was used to evaluate these
performances according to the manufacturer’s model in MATLAB/Simulink. By comparison
with the experimental performances, the results quantify through a
certain number of indices, a minimal power drop according to the acquired
irradiance estimated at 3.45%. The interest of this approach is to contribute
to the prediction of the operating performance of PV panels in the installation
phase in non-standard areas.
References
[1]
Adelstein, J. and Sekulic, B. (2005) Performance and Reliability of a 1 kW Amorphous Silicon Photovoltaic Roofing System. The 31st IEEE Photovoltaics Specialists Conference and Exhibition, Lake Buena Vista, 3-7 January 2005, 1.
[2]
Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C. and Spertino, F. (2007) Photovoltaic Applications. Journal of Materials Processing Technology, 181, 267-273. https://doi.org/10.1016/j.jmatprotec.2006.03.043
[3]
Jordan, D.C., Silverman, T.J., Wohlgemuth, J.H., Kurtz, S.R. and VanSant, K.T. (2017) Photovoltaic Failure and Degradation Modes. Progress in Photovoltaics, Research and Applications, 25, 318-326. https://doi.org/10.1002/pip.2866
[4]
Cameroon Voice (2014) Le Cameroun veut produire 3000 MW d’élctricité pour atteindre un taux de croissance de 9,5%. Cameroun. https://www.google.com/amp/s/www.investiraucameroun.com/index.php/energie/1808-5560-le-cameroun-a-besoin-de-3000-mw-d-electricite-pour-atteindre-un-taux-de-croissance-de-9-5/amp
[5]
Bagdonavicius, V. and Nikulin, M. (1995) On Accelerated Testing of Systems. European Journal of Diagnosis and Safety in Automation, 5, 307-316.
[6]
Berman, D. and Faiman, D. (1997) EVA Browning and the Time-Dependance of I-V Curve Parameters on PV Modules with and without Mirror-Enhancement in a Desert Environment. Solar Energy Materials and Solar Cells, 45, 401-412. https://doi.org/10.1016/S0927-0248(96)00087-6
[7]
ARSEL Cameroun (2014) Mission d’étude sur les énergies renouvelables. Ministère de l’eau and de l’énergie, Cameroun.
[8]
IRENA (2015) L’Afrique and les énergies renouvelables: La voie vers la croissance durable. http://www.irena.org/Publications
[9]
Carbabaye, A. and Laulheret, R. (2005) Evaluation de la sûreté de fonctionnement des systèmes dynamiques par modélisation récursive. Proc. QUALITA.
[10]
Maksimovic, D., Thottuvelil, A.M. and Verghese, G.C. (2001) Modelling and Simulation of Power Electronic Converters. Proceedings of the IEEE, 89, 898-912. https://doi.org/10.1109/5.931486
[11]
Ababacar, N. (2013) étude de la dégradation and de la fiabilité des modules photovoltaïques-impact delapoussière sur les caractéristiques électriques deperformance. Thèse en Sciencesdel’ingénieur, EcoleSupérieure Polytechnique (ESP)-UCAD.
[12]
Tolok Nelem, A., Ele, P., Alioune Ndiaye, P., Ndjakomo Essiane, S. and Pesdjock, M.J.P. (2021) Dynamic Optimization of Switching States of a Hybrid Power Network. International Journal of Control, Automation and Systems, 19, 1-11. https://doi.org/10.1007/s12555-020-0088-3
[13]
Ndjakomo Essiane, S., Ngo Bissé, J.T. and Pesdjock, M.J.P. (2020) Simple Adaptive Synergetic Control Scheme Based on the MIT Rule of the DC Motor. European Journal of Applied Physics, 2, 1. https://doi.org/10.24018/ejphysics.2020.2.6.30
[14]
Nettari, Y. (2014) Commandes robustes and intelligentes des convertisseurs dc-dc. Magister, Université Ferhat Abbas/Setifi, ufasi, Faculté de technologie Algérie.
[15]
Laronde, R., Abderafi, C. and Bigaud, D. (2011) Fiabilité d’un module photovoltaïque par les essais accélérés. Laboratoire LASQUO ISTIA, Universitéd’Angers, Angers.