This brief review described spatial-time climate patterns generated by the dynamics and thermodynamics of the Earth’s climate system and methods of identifying these patterns. Specifically, it does discuss the following major climate patterns: El Ni?o-Southern Oscillation (ENSO), Cold Ocean-Warm Land (COWL) pattern, Northern and Southern Annular Patterns (NAM and SAM), Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional Overturning Circulation (AMOC), Pacific North-American Pattern (PNA) and Pacific Decadal Oscillation Pattern (PDO). In view of an extensive number of publications on some climate patterns, such as the ENSO, which discussed in many hundred of publications, this review is not intended to cover all the details of individual climate patterns but intends only to give a general overview of their structure, mechanisms of their formation and response to external forcing. It is assumed that the climate patterns can be treated as attractors of dynamical systems allowing us to extract and predict some specific features of the patterns such as the origin and evolution of the climate patterns and their role in climate change. Thus the knowledge of patterns allows the climate prediction on long time scales and understanding of how an external forcing affects the frequency of occurrence of climate patterns and their magnitude but not the spatial structure.
References
[1]
Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., & Cremers, D. (2018). Clustering with Deep Learning: Taxonomy and New Methods. https://arxiv.org/abs/1801.07648
[2]
Aumann, H., & Ruzmaikin, A. (2013). Frequency of Deep Convective Clouds in the Tropical Zone from 10 Years of AIRS Data. Atmospheric Chemistry and Physics, 13, 10795-10806. https://doi.org/10.5194/acp-13-10795-2013
[3]
Baldwin, M. P., & Dunkerton, T. J. (1999). Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere. Journal of Geophysical Research: Atmospheres, 104, 30937-30946. https://doi.org/10.1029/1999JD900445
[4]
Bjerknes, J. (1966). A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature. Tellus, 18, 820-829. https://doi.org/10.3402/tellusa.v18i4.9712
[5]
Bjerknes, J. (1969). Atmospheric Teleconnections from the Equatorial Pacific. Journal of Physical Oceanography, 97, 163-172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
[6]
Broccoli, A. J., Lau, N.-C., & Nath, M. J. (1998). The Cold Ocean and Warm Land Pattern: Model Simulation and Relevance to Climate Change Detection. Journal of Climate, 11, 2743-2763. https://doi.org/10.1175/1520-0442(1998)011<2743:TCOWLP>2.0.CO;2
[7]
Buckley, M. W., & Marshall, J. (2016). Observations, Inferences, and Mechanisms of the Atlantic Meridional Overturning Circulation: A Review. Reviews of Geophysics, 54, 5-63. https://doi.org/10.1002/2015RG000493
[8]
Bunimovich, L. (2015). Short-Term and Long-Term Forecast for Chaotic and Random Systems (50 Years after Lorenz’s Paper). Nonlinearity, 27, R51. https://doi.org/10.1088/0951-7715/27/9/R51
[9]
Chao, W. C. (1985). Sudden Stratospheric Warmings as Catastrophes. Journal of the Atmospheric Sciences, 42, 1631-1646. https://doi.org/10.1175/1520-0469(1985)042<1631:SSWAC>2.0.CO;2
[10]
Charney, J. G., & Darzin, P. G. (1961). Propagation of Planetary-Scale Disturbances from the Lower into the Upper Atmosphere. Journal of Geophysical Research, 66, 83-109. https://doi.org/10.1029/JZ066i001p00083
[11]
Cheng, X., & Wallace, J. M. (1993) Cluster Analysis of the Northern Hemisphere Wintertime 500-hPa Height Field: Spatial Patterns. Journal of the Atmospheric Sciences, 50, 2674-2696. https://doi.org/10.1175/1520-0469(1993)050<2674:CAOTNH>2.0.CO;2
[12]
Corti, S., Molteni, F., & Palmer, T. N. (1999). Signatures of Recent Climate Change in Frequencies of Natural Atmospheric Circulation Regimes. Nature, 398, 799-802. https://doi.org/10.1038/19745
[13]
Dai, Y., Feldstein, S. B., Tan, B., & Lee, S. (2017). Formation Mechanisms of the Pacific North American Teleconnection with and without Its Canonical Tropical Convection Pattern. Journal of Climate, 30, 3139-3155. https://doi.org/10.1175/JCLI-D-16-0411.1
[14]
Dickson R. R., & Namias, J. (1976). North American Influences on the Circulation and Climate of the North Atlantic Sector. Monthly Weather Review, 104, 1255-1265. https://doi.org/10.1175/1520-0493(1976)104<1255:NAIOTC>2.0.CO;2
[15]
Ding, C., & He, X. (2014). K-Means Clustering via Principal Component Analysis. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, July 2004. https://doi.org/10.1145/1015330.1015408
[16]
Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). The Backbone of the Climate Network. EPL (Europhysics Letters), 87, Article ID: 48007. https://doi.org/10.1209/0295-5075/87/48007
[17]
Feynman, J., & Fougere, P. (1984). Eighty-Eight Year Cycle in Solar Terrestrial Phenomena Confirmed. Journal of Geophysical Research: Space Physics, 89, 3023-3027. https://doi.org/10.1029/JA089iA05p03023
[18]
Feynman, J., & Ruzmaikin, A. (2014). The Centennial Gleissberg Cycle and Its Association with Extended Minima. Journal of Geophysical Research: Space Physics, 119, 6027-6041. https://doi.org/10.1002/2013JA019478
[19]
Frankignoul, C., & Hasselmann, K. (1977). Stochastic Climate Models, Part 2, Application to Sea-Surface Temperature Anomalies and Thermocline Variability. Tellus, 29, 289-305. https://doi.org/10.3402/tellusa.v29i4.11362
[20]
Gammaitoni, L. et al. (1998). Stochastic Resonance. Reviews of Modern Physics, 70, 223. https://doi.org/10.1103/RevModPhys.70.223
[21]
Gill, A. E. (1982). Atmosphere-Ocean Dynamics. In International Geophysics Series Vol. 30, 662 p). San Diego, CA: Academic Press.
[22]
Gray, L. J., Sparrow, S., Juckes, M., O’Neil, A., & Andrews, D. G. (2003). Flow Regimes in the Winter Stratosphere of the Northern Hemisphere. Quarterly Journal of the Royal Meteorological Society, 129, 925-946. https://doi.org/10.1256/qj.02.82
[23]
Haigh, J. D. (1994). The Role of Stratospheric Ozone in Modeling the Solar Radiative Forcing of Climate. Nature, 33, 544-546. https://doi.org/10.1038/370544a0
[24]
Hameed, S., & Lee, J. N. (2005). A Mechanism for Sun-Climate Connection. Geophysical Research Letters, 32, L23817. https://doi.org/10.1029/2005GL024393
[25]
Hartigan, J. A. (1975). Clustering Algorithms. Hoboken, NJ: John Wiley & Sons, Inc.
[26]
Hasselmann, K. (1976). Stochastic Climate Models. Part 1. Theory. Tellus, 28, 473-484. https://doi.org/10.3402/tellusa.v28i6.11316
[27]
Henley, B. J., Meehl, G., Power, S. B., Folland, C. K., King, A. D., Brown, J. N., Karoly, D. J., Delage, F., Gallant, A. J. E., Freund, M., & Neukom, R. (2017). Spatial and Temporal Agreement in Climate Model Simulations of the Interdecadal Pacific Oscillation. Environmental Research Letters, 12, Article ID: 044011. https://doi.org/10.1088/1748-9326/aa5cc8
[28]
Holton, J. R. (2004). Dynamic Meteorology (p. 347). Amsterdam: Elsevier.
[29]
Holton, J. R., & Mass, C. (1976). Stratospheric Vacillation Cycles. Journal of the Atmospheric Sciences, 33, 2218-2225. https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2
[30]
Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269, 676-679. https://doi.org/10.1126/science.269.5224.676
[31]
IPCC (2014). Summary for Policymakers. Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-spm-1.pdf
[32]
Jin, F. F. (1997). An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. Journal of the Atmospheric Sciences, 54, 811-829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
[33]
Johnson, C., & Feldstein, S. B. (2010). The Continuum of North Pacific Sea Level Pressure Patterns: Intraseasonal, Interannual, and Interdecadal Variability. Journal of Climate, 23, 851-867. https://doi.org/10.1175/2009JCLI3099.1
[34]
Jolliffe, I. T. (2002). Principal Component Analysis. In Series: Springer Series in Statistics (2nd ed., 487 p). New York: Springer.
[35]
Jolliffe, I. T., & Cadima, J. (2016). Principal Component Analysis: A Review and Recent Developments. Philosophical Transactions of the Royal Society A, 374, Article ID: 20150202. https://doi.org/10.1098/rsta.2015.0202
[36]
Khatiwala, S., Shaw, B. E., & Cane, M. A. (2001). Enhanced Sensitivity of Persistent Events to Weak Forcing in Dynamical and Stochastic Systems: Implications for Climate Change. Geophysical Research Letters, 28, 2633-2336. https://doi.org/10.1029/2000GL012773
[37]
Kimoto, M., & Ghil, M. (1993). Multiple Flow Regimes in the Northern Hemisphere Winter. Journal of the Atmospheric Sciences, 50, 2645-2673. https://doi.org/10.1175/1520-0469(1993)050<2645:MFRITN>2.0.CO;2
[38]
Kodera, K. M. (1995). On the Origin and Nature of the Interannual Variability of the Winter Stratospheric Circulation in the Northern Hemisphere. Journal of Geophysical Research: Atmospheres, 100, 14077-14087. https://doi.org/10.1029/95JD01172
Kramers, H. (1940). Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions. Physica (Utrecht), 7, 284-304. https://doi.org/10.1016/S0031-8914(40)90098-2
[41]
Labitzke, K. (1987). Sunspots, the QBO, and the Stratospheric Temperatures in the North Polar Region. Geophysical Research Letters, 14, 535-537. https://doi.org/10.1029/GL014i005p00535
[42]
Labitzke, K. (2004). On the Solar Cycle-QBO Relationship: A Summary. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 45-54. https://doi.org/10.1016/j.jastp.2004.07.016
[43]
Lemke, P. (1977). Stochastic Climate Models, Application to Zonally Averaged Energy Models. Tellus, 29, 385-392. https://doi.org/10.3402/tellusa.v29i5.11371
[44]
Limpasuvan, V., & Hartmann, D. L. (2000). Wave-Maintained Annular Modes of Climate Variability. Journal of Climate, 13, 4414-4429. https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2
[45]
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[46]
Loutre, M., Paillard, D., Vimeux, F., & Cortijo, E. (2004). Does Mean Annual Insolation Have the Potential to Change the Climate? Earth and Planetary Science Letters, 221, 1-14. https://doi.org/10.1016/S0012-821X(04)00108-6
[47]
Lovejoy, S. (2013). What Is Climate? EOS, 194, 1-2. https://doi.org/10.1002/2013EO010001
[48]
Mantua, N. J., & Hare, S. R. (2002). The Pacific Decadal Oscillation (A Review). Journal of Oceanography, 58, 35-44. https://doi.org/10.1023/A:1015820616384
[49]
Mantua, N., Hare, S., Zhang, Y., Wallace, J., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impact on Salmon Production. Bulletin of the American Meteorological Society, 178, 1069-3080. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
[50]
Meehl, G. A., Arblaster, J., Fasullo, J., Hu, A., & Trenberth, K. (2014). Model-Based Evidence of Deep-Ocean Heat Uptake during Surface-Temperature Hiatus of Global Warming. Nature Climate Change, 4, Article No. 89802.
[51]
Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., & Long, J. (2018). A Survey of Clustering with Deep Learning: From the Perspective of Network Architecture. IEEE Access, 6, 39501-39514. https://doi.org/10.1109/ACCESS.2018.2855437
[52]
Monahan, A. H. (2000). Nonlinear Principal Component Analysis by Neural Net-Works: Theory and Application to the Lorenz System. Journal of Climatee, 13, 82-835. https://doi.org/10.1175/1520-0442(2000)013<0821:NPCABN>2.0.CO;2
[53]
Monahan, A. H., Fyfe, J. C., Ambaum, M. H. P., Stephenson, D. B., & North, G. R. (2009). Empirical Orthogonal Functions: The Medium Is the Message. Journal of Climate, 22, 6501-6514. https://doi.org/10.1175/2009JCLI3062.1
[54]
Newman, M. et al. (2016). The Pacific Decadal Oscillation, Revisited. Bulletin of the American Meteorological Society, 29, 4399-4427. https://doi.org/10.1175/JCLI-D-15-0508.1
[55]
Palmer, T. N. (1999). A Nonlinear Dynamical Perspective on Climate Prediction. Journal of Climate, 12, 575-591. https://doi.org/10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2
[56]
Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 2, 559-572. https://doi.org/10.1080/14786440109462720
[57]
Picaut, J., Masia, F., & du Penhoatf, Y. (1997). An Advective-Reflective Conceptual Model for the Oscillatory Nature of the ENSO. Science, 277, 663-666. https://doi.org/10.1126/science.277.5326.663
[58]
Quadrelli, R., & Wallace, J. M. (2004). A Simplified Linear Framework for Interpreting Patterns of Northern Hemisphere Wintertime Climate Variability. Journal of Climate, 17, 3728-3744. https://doi.org/10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2
[59]
Rose, K. (1998). Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems. Proceedings of the IEEE, 86, 2210-2239. https://doi.org/10.1109/5.726788
[60]
Rossby, C.-G. (1939). Relation between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacements of the Semi-Permanent Centers of Action. Journal of Marine Research, 2, 38-55. https://doi.org/10.1357/002224039806649023
[61]
Rossby, C.-G. (1941). The Scientific Basis of Modern Meteorology. In Climate and Man (pp. 599-655). Washington DC: US Yearbook of Agriculture.
[62]
Rossow, W. B., Tselioudis, G., Polak, A., & Jakob, C. (2005). Tropical Climate Described as a Distribution of Weather States Indicated by Distinct Mesoscale Cloud Property Mixtures. Geophysical Research Letters, 32, L21812. https://doi.org/10.1029/2005GL024584
[63]
Ruzmaikin, A. (1999). Can El Niño Amplify the Solar Forcing of Climate? Geophysical Research Letters, 26, 2255-2258. https://doi.org/10.1029/1999GL900535
[64]
Ruzmaikin, A. (2007). Effect of Solar Variability on the Earth’s Climate Patterns. Advances in Space Research, 40, 1146-1151. https://doi.org/10.1016/j.asr.2007.01.076
[65]
Ruzmaikin, A. (2009). Residence Time Distributions of the Northern Annular Mode. International Journal of Climatology, 29, 2072-2078. https://doi.org/10.1002/joc.1788
[66]
Ruzmaikin, A., & Feynman, J. (2002). Solar Influence on a Major Mode of Atmospheric Variability. Journal of Geophysical Research: Atmospheres, 107, ACL 7-1-ACL 7-11. https://doi.org/10.1029/2001JD001239
[67]
Ruzmaikin, A., & Feynman, J. (2015). The Earth Climate at Minima of Centennial Gleissberg Cycles. Advances in Space Research, 56, 1590-1599. https://doi.org/10.1016/j.asr.2015.07.010
[68]
Ruzmaikin, A., & Guillaume, A. (2014). Clustering of Atmospheric Data by the Deterministic Annealing. Journal of Atmospheric and Solar-Terrestrial Physics, 120, 121-131. https://doi.org/10.1016/j.jastp.2014.09.009
[69]
Ruzmaikin, A., Cadavid, A. C., & Lawrence, J. K. (2006a). Stratospheric Wave-Mean Flow Interaction: Simple Modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1311-1320. https://doi.org/10.1016/j.jastp.2006.05.004
[70]
Ruzmaikin, A., Feynman, J., & Yung, Y. L. (2006b). Is Solar Variability Reflected in the Nile River? Journal of Geophysical Research: Atmospheres, 111, D21114. https://doi.org/10.1029/2006JD007462
[71]
Ruzmaikin, A., Feynman, J., Jiang, X., Noone, D., Waple, A., & Yung, Y. L. (2004a) The Pattern of Northern Hemisphere Temperature during Prolonged Periods of Low Solar Output. Geophysical Research Letters, 31, L12201. https://doi.org/10.1029/2004GL019955
[72]
Ruzmaikin, A., Lawrence, J. K., & Cadavid, A. C. (2003). A Simple Model of Stratospheric Dynamics Including Solar Variability. Journal of Climate, 16, 1593-1600. https://doi.org/10.1175/1520-0442-16.10.1593
[73]
Ruzmaikin, A., Lawrence, J. K., & Cadavid, A. C. (2004b). A Simple Model of Solar Variability Influence on Climate. Advances in Space Sciences, 34, 349-354. https://doi.org/10.1016/j.asr.2003.02.048
[74]
Sassen, K., & Wang, Z. (2008). Classifying Clouds around the Globe with the CloudSat Radar: 1-Year of Results. Geophysical Research Letters, 35, L04805. https://doi.org/10.1029/2007GL032591
[75]
Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, P. (1999). Solar Cycle Variability, Ozone, and Climate. Science, 284, 305-308. https://doi.org/10.1126/science.284.5412.305
[76]
Sohn, B. J., Yeh, S.-W., Schmetz, J., & Song, H.-J. (2013). Observational Evidences of Walker Circulation Change over the Last 30 Years Contrasting with GCM Results. Climate Dynamics, 40, 1721-1732. https://doi.org/10.1007/s00382-012-1484-z
[77]
Stager, J. C., Ruzmaikin, A., Conway, D., Verburg, P., & Mason, P. J. (2007). Sunspots, El Niño, and the Levels of Lake Victoria, East Africa. Journal of Geophysical Research: Atmospheres, 112, D15106. https://doi.org/10.1029/2006JD008362
[78]
Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophysical Research Letters, 25, 1297-1300. https://doi.org/10.1029/98GL00950
[79]
Thompson, D. W. J., & Wallace, J. M. (2001). Regional Climate Impacts of the Northern Hemisphere Annular Mode. Science, 293, 85-89. https://doi.org/10.1126/science.1058958
[80]
Timmermann, A. et al. (2018). El Niño and Southern Oscillation Complexity. Nature, 559, 535-545. https://doi.org/10.1038/s41586-018-0252-6
[81]
Trenberth, K. E., & Fasullo, J. T. (2013). An Apparent Hiatus in Global Warming? Earth’s Future, 1, 19-32. https://doi.org/10.1002/2013EF000165
[82]
Trenberth, K. E., Fasullo, J. T., Branstator, G., & Phillips, A. S. (2014) Seasonal Aspects of the Recent Pause in Surface Warming. Nature Climate Change, 4, 911-916. https://doi.org/10.1038/nclimate2341
[83]
Trouet, V., & Taylor, A. H. (2009). Multi-Century Variability in the Pacific North American Circulation Pattern Reconstructed from Tree Rings. Climate Dynamics, 35, 953-963. https://doi.org/10.1007/s00382-009-0605-9
[84]
van Oldenborgh, G. J., te Raa, L. A., Dijkstra, H. A., & Philip, S. Y. (2009). Frequency- or Amplitude-Dependent Effects of the Atlantic Meridional Overturning on the Tropical Pacific Ocean. Ocean Science, 15, 293-301. https://doi.org/10.5194/os-5-293-2009
[85]
Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetmaa, A. & Harrison, M. J. (2006). Weakening of Tropical Pacific Atmospheric Circulation Due to Anthropogenic Forcing. Nature, 441, 73-76. https://doi.org/10.1038/nature04744
[86]
Walker, G. (1928). World Weather. Quarterly Journal of the Royal Meteorological Society, 54, 79-88. https://doi.org/10.1002/qj.49705422601
[87]
Walker, G. T., & Bliss, E. W. (1932). World Weather V. Memoirs of the Royal Meteorological Society, 4, 53-84.
[88]
Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109, 784-812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
[89]
Wallace, J. M., Zhang, Y., & Baju, L. (1996). Interpretation of Interdecadal Trends in Northern Hemisphere Surface Air Temperature. Journal of Climate, 9, 249-260. https://doi.org/10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2
[90]
Wallace, J. M., Zhang, Y., & Renwick, J. A. (1995). Dynamic Contribution to Hemispheric Mean Temperature Trends. Science, 270, 780-783. https://doi.org/10.1126/science.270.5237.780
[91]
Wang, C. (2001). A Unified Oscillator Model for the El Niño-Southern Oscillation. J Journal of Climate, 14, 98-115. https://doi.org/10.1175/1520-0442(2001)014<0098:AUOMFT>2.0.CO;2
[92]
Weijer, W. et al. (2019). Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. Journal of Geophysical Research: Oceans, 124, 5326-5375. https://doi.org/10.1029/2019JC015083
[93]
Wu, Z., Huang, N. E., & Chen, X. (2009). The Multi-Dimensional Ensemble Empirical Mode Decomposition Method. Advances in Adaptive Data Analysis, 1, 339-372. https://doi.org/10.1142/S1793536909000187
[94]
Yoden, S. (1987). Bifurcation Properties of a Stratospheric Vacillation Model. Journal of the Atmospheric Sciences, 44, 1723-1733. https://doi.org/10.1175/1520-0469(1987)044<1723:BPOASV>2.0.CO;2