全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling of Sorghum (Sorghum bicolor) Growing Areas under Current and Future Climate in the Sudanian and Sahelian Zones of Mali

DOI: 10.4236/ajcc.2021.102009, PP. 185-203

Keywords: Modeling, Maxent Model, Sorghum, Climatic Scenarios, Sudan-Sahel Region, Mali

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climatic variability is one of the main constraints of agriculture in Mali, which will certainly affect long-term sorghum yields. The objective of the present study was to assess the effect of climate variability on sorghum production areas by 2050 in the Sudanian and Sahelian zones of Mali considering three climate scenarios: current scenarios (RCP 2.5), optimistic scenarios (RCP 4.5) and pessimistic scenarios (RCP 8.5). Therefore, 11,010 occurrence points of sorghum (Sorghum bicolor) were collected and associated with the environmental variables of the three climatic scenarios according to the maximum entropy approach (Maxent). Sorghum environmental data and points of occurrence were obtained from AfriClim and GBIF databases, respectively. The correlations carried out and the Jackknife test allowed us to identify variables that contributed more to the performance of the model. Overall, in the Sudanian zone, the suitable area for sorghum production which currently represents 37% of the area of the district of Koulikoro will increase up to 51% by 2050 considering the optimistic scenario (RCP 4.5). Furthermore, considering the pessimistic scenario (RCP 8.5), the suitable zones for sorghum production will experience a decrease of 10%. In the Sahelian zone, the suitable zones for sorghum production that represent 55% of San district area considering the RCP 2.5 scenario will experience a decline of 24% by 2050 considering both the optimistic (RCP 4.5) and pessimistic (RCP 8.5) scenarios. It is suggested to carry out investigations on potential sorghum yield prediction in both study areas in order to identify suitable production areas of the crop in the near future (2050) and long term (2100) as adaptation strategies and resilience of farmers to climate change.

References

[1]  Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
https://doi.org/10.1111/j.1365-2664.2006.01214.x
[2]  Araújo, M. B., & Luoto, M. (2007). The Importance of Biotic Interactions for Modelling Species Distributions under Climate Change. Global Ecological Biogeography, 16, 743-753.
https://doi.org/10.1111/j.1466-8238.2007.00359.x
[3]  Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of Species-Climate Impact Models under Climate Change. Global Change Biology, 11, 1504-1513.
https://doi.org/10.1111/j.1365-2486.2005.01000.x
[4]  Bakary, K. (2010). Etude de l’efficacité agronomique de microdosage dans un système de rotation biennale de sorgho, niébé dans les conditions de l’IPR/IFRA de katibougou, Mali (78 p.). Thèse de mémoire du diplôme d’Ingénieur de l’IPR/IFRA de Katibougou. Mali.
[5]  Beaumont, L. J., Pitman, A. J., Poulsen, M., & Hughes, L. (2007). Where Will Species Go? Incorporating New Advances in Climate Modelling into Projections of Species Distributions. Global Change Biology, 13, 1368-1385.
https://doi.org/10.1111/j.1365-2486.2007.01357.x
[6]  Bougma, L. A., Ouerdraogo, M. H., Sawadogo, N., Sawadogo, M., Balma, D., & Vernooy, R. (2018). Perceptions paysannes de l’impact du changement climatique sur le mil dans la zone sahélienne et soudano-sahélienne du Burkina Faso. Afrique Science, 14, 264-275.
[7]  Boyard-Micheau, J. (2013). Prévisibilité potentielle des variables climatiques à impact agricole en Afrique de l’Est et application au sorgho dans la région du mont Kenya (338 p.). Doctoral Dissertation, Dijon.
[8]  Camberlin, P., Martiny, N., Philippon, N., & Richard, Y. (2007). Determinants of the Interannual Relationships between Remote Sensed Photosynthetic Activity and Rainfall in Tropical Africa. Remote Sensing of Environment, 106, 199-216.
https://doi.org/10.1016/j.rse.2006.08.009
[9]  Coumbiti, D. (2019). Effet de la fertilisation sur le comportement du riz irrigué en système de riziculture intensif (SRI) dans les conditions agroclimatiques de San, Mali (40 p.). Thèse de mémoire du diplôme d’Ingénieur de l’IPR/IFRA de Katibougou, Mali.
[10]  Dossou, E. M., Lougbégnon, T. O., Houessou, L. G., & Codjia, J. T. C. (2016). Analyse de l’impact du changement climatique sur l’aire de distribution actuelle et future de Lannea microcarpa Engl, & K, Krause au Bénin, Afrique de l’Ouest. Afrique Science, 12, 27-38.
[11]  Dotchamou, F. T., Atindogbe, G., Sode, A. I., & Fonton, H. N. (2016). Density and Spatial Pattern of Parkia biglobosa under Climate Change: The Case of Benin. Journal of Agriculture and Environment for International Development, 110, 173-194,
[12]  Elith, J., Graham, R. P., Anderson, M., Dudik, S., Ferrier, A., Guisan, R. J., Hijmans, F., Huettmann, J. R., Leathwick, A., Lehmann, J., Li, L. G., Lohmann, B. A., Loiselle, G., Manion, C., Moritz, M., Nakamura, Y., Nakazawa, J. M., Overton, A. T., Peterson, S. J., Phillips, K., Richardson, R., Scachetti-Pereira, R. E., Schapire, J., Soberon, S., Williams, M. S., Wisz, N., & Zimmermann, E. (2006). Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography, 29, 129-151.
https://doi.org/10.1111/j.2006.0906-7590.04596.x
[13]  Elith, J., Kearney, M., & Phillips, S. (2010). The Art of Modelling Range-Shifting Species. Methods in Ecology and Evolution, 1, 330-342.
https://doi.org/10.1111/j.2041-210X.2010.00036.x
[14]  Fandohan, A. B., Oduor, A. M. O., Sode, A. I., Wu, L., Cuni-Sanchez, A., Assede, E., & Gouwakinnou, G. N. (2015). Modeling Vulnerability of Protected Areas to Invasion by Chromolaena odorata under Current and Future Climates. Ecosystem Health and Sustainability, 1, 20.
https://doi.org/10.1890/EHS15-0003.1
[15]  Fandohan, B., Gouwakinnou, G. N., Fonton, N. H., Sinsin, B., & Liu, J. (2013). Impact des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: Cas du tamarinier au Bénin. Biotechnologie, Agronomie, Société et Environnement, 17, 450-462
[16]  Franklin, J. (2009). Mapping Species Distribution: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation) Saint Diego State (318 p.). Cambridge: Cambridge University Press.
[17]  Giam, X., Bradshaw, C. J. A., Hugh, T. W. T., & Navjot, S. S. (2010). Future Habitat Loss and the Conservation of Plant Biodiversity. Biological Conservation, 143, 1594-1602.
https://doi.org/10.1016/j.biocon.2010.04.019
[18]  Guisan, A., & Zimmermann, N. E. (2000). Predictive Habitat Distribution Models in Ecology. Ecological Modelling, 135, 147-186.
https://doi.org/10.1016/S0304-3800(00)00354-9
[19]  Hounkpêvi, A., Tosso, F., Gèmavo, D. S. J. C., Kouassi, E. K., Koné, D., & Glèlè-Kakaï, R. (2016). Climate and Potential Habitat Suitability for Cultivation and in Situ Conservation of the Black Plum (Vitex doniana Sweet) in Benin, West Africa. International Journal of Agronomy and Agricultural Research, 8, 67-80.
[20]  Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-457.
https://doi.org/10.1101/SQB.1957.022.01.039
[21]  IPCC (2013). Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to the IPCC Fifth Assessment Report. New York: Cambridge University Press.
[22]  Lobell, D. B., & Field, C. B. (2007). Global Scale Climate—Crop Yield Relationships and the Impacts of Recent Warming. Environmental Research Letters, 2, Article ID: 014002.
https://doi.org/10.1088/1748-9326/2/1/014002
[23]  Newman, T. P. (2016). Tracking the Release of IPCC AR5 on Twitter: Users, Comments, and Sources Following the Release of the Working Group I Summary for Policy Makers. Public Understanding of Science, 26, 815-825.
https://doi.org/10.1177/0963662516628477
[24]  Ortega-Huerta, M. A., & Peterson, A. T. (2004). Modelling Spatial Patterns of Biodiversity for Conservation Prioritization in North-Eastern Mexico. Diversity and Distributions, 10, 39-54.
https://doi.org/10.1111/j.1472-4642.2004.00051.x
[25]  Ouattara, I., Diarra, Y., & Mariko, S. (2019). Etude des Impacts des Changements Climatiques sur les Activités Agricoles dans la Commune Rurale de Mafouné, Cercle de Tominian, Région de Ségou au Mali. European Scientific Journal, 15, 121-144.
https://doi.org/10.19044/esj.2019.v15n11p121
[26]  Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling Potential Invasion Range of Alien Invasive Species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22, 36-43.
https://doi.org/10.1016/j.ecoinf.2014.04.002
[27]  Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
[28]  Platts, P. J., Marchant, R. A. (2015). AFRICLIM: High-Resolution Climate Projections for Ecological Applications in Africa. African Journal of Ecology, 53, 103-108.
https://doi.org/10.1111/aje.12180
[29]  PSSP (Projet de Sécurisation des Systèmes Pastoraux) (2009). La mobilité pastorale dans la région de Zinder, IRAM-Karkara/AFD (113 p.).
[30]  Renner, I. W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S. J., Popovic, G., & Warton, D. I. (2015). Point Process Models for Presence-Only Analysis. Methods in Ecology and Evolution, 6, 366-379.
https://doi.org/10.1111/2041-210X.12352
[31]  Ricklefs, R. E. (2010). A Economia da Natureza (570 p.). Rio de Janeiro: Guanabara Koogan.
[32]  Schwartz, M. W. (2012). Using Niche Models with Climate Projections to Inform Conservation Management Decisions. Biological Conservation, 155, 149-156.
https://doi.org/10.1016/j.biocon.2012.06.011
[33]  Sene, L. (1995). Réponse de la variété de sorgho CE 145-66 à l’alimentation en eau: Effets du stress hydrique sur le rendement et la qualité des semences (59 p.). Mémoire d’ingénieur en travaux agricoles, ENCR, CNRA de Bambey.
[34]  Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V., & Chandolu, K. C. (2014). Soybean Production Potential in Africa. Global Food Security, 3, 31-40.
https://doi.org/10.1016/j.gfs.2013.12.001
[35]  Soufiyanou, K., Ismaïla, T. I., & Ousséni, A. (2019). Impact de la Variabilité Climatique sur la Niche Ecologique de Diospyros mespiliformis Hochst. ex A. De. dans la Région Soudanienne au Bénin (Afrique de l’Ouest). European Scientific Journal, 15, 2-19.
https://doi.org/10.19044/esj.2019.v15n36p1
[36]  Soumaré, M. (2004). Contribution à la prévision de l’aire de diffusion de variétés de sorgho au Mali: Couplage entre modèle de croissance des cultures et système d’information géographique (92 p.). Doctoral Dissertation, Université de Paris-Nanterre.
[37]  Sultan, B., & Gaetani, M. (2016). Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Frontiers in Plant Science, 7, 1262.
https://doi.org/10.3389/fpls.2016.01262
[38]  Sultan, B., Baron, C., Dingkuhn, M., Sarr, B., & Janicot, S. (2005). La variabilité climatique en Afrique de l’Ouest aux échelles saisonnière et intra-saisonnière, II: Applications à la sensibilité des rendements agricoles au Sahel. Science et changements planétaires/Sécheresse, 16, 23-33.
[39]  Talacuece, M. A. D., Justino, F. B., Rodrigues, R. D. á., Flores, M. E. P., Nascimento, J. G., & Santos, E. A. (2016). Modeling of Soybean under Present and Future Climates in Mozambique. Climate, 4, 1-14.
https://doi.org/10.3390/cli4020031
[40]  Tennant, W. J., & Hewitson, B. C. (2002). Intra-Seasonal Rainfall Characteristics and Their Importance to the Seasonal Prediction Problem. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22, 1033-1048.
https://doi.org/10.1002/joc.778
[41]  Thomas, B., Lutz, S., & Rideau, C. (2015). Modélisation de la répartition des campagnols aquatiques du genre Arvicola en Normandie, GroupeMammalogique Normand, Agence de l’Eau Seine-Normandie (62 p.).
[42]  Touré, A. O., & Diallo, A. G. (2004). Caractéristique et techniques culturales des variétés et hybrides de sorgho au Mali (70 p.). Institut d’Economie rural (IER)/Centre Régional de Recherche Agronomique de Sotuba (CRRA).
[43]  Touré, H. A. (2016). Effect of Climate Change and Variability on Pearl Millet (Pennisetum glaucum (L,) R, Br,) Production in the Sudanian and Sahelian Agro-Ecological Zones in Mali (183 p.). Doctoral Dissertation.
[44]  Traoré, B., Corbeels, M., Van Wijk, M. T., Rufino, M. C., & Giller, K. E. (2013). Effects of Climate Variability and Climate Change on Crop Production in Southern Mali. European Journal of Agronomy, 49, 115-125.
https://doi.org/10.1016/j.eja.2013.04.004
[45]  Van Zonneveld, M., Koskela, J., Vinceti, B., & Jarvis, A. (2009). Impact of Climate Change on the Distribution of Tropical Pines in Southeast Asia. Unasylva, 231/232, 24-29.
[46]  Wheeler, T., & Von Braun, J. (2013). Climate Change Impacts on Global Food Security, Science, 341, 508-513.
https://doi.org/10.1126/science.1239402

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133