全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Tandem Three Consecutive Reactions: Aza-Wittig, Imine Condensation and Electrophilic Aromatic Substitution Strategy to Indolizine Synthesis

DOI: 10.4236/ijoc.2021.112006, PP. 55-71

Keywords: Iminophosphorane, Tandem Reaction, Indolizine Synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reaction of ethyl (Z)-3-(heteroaryl/aryl)-2-((triphenyl-λ5-phosphaneylidene) amino) acrylates intermediates with 2,3-thiophenedicarboxaldehyde was used in novel Tandem three consecutive reactions: aza-Wittig, imine condensation and electrophilic heteroaromatic cyclization to obtain a series of indolizines. A tentative mechanism of this reaction is proposed.

References

[1]  Cichewicz, R.H. and Kouzi, S.A. (2004) Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection. Medicinal Research Reviews, 24, 90-114.
https://doi.org/10.1002/med.10053
[2]  Leeson, P.D. (2012) Chemical Beauty Contest. Nature, 481, 455-456.
https://doi.org/10.1038/481455a
[3]  Lipinski, C.A., Lombardo, F., Domini, B.W. and Feeney, P.J. (1997) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 23, 3-25.
https://doi.org/10.1016/S0169-409X(96)00423-1
[4]  Wenlock, M.C., Austin, R.P., Barton, P. and Leeson, P.D. (2003) A Comparison of Physiochemical Property Profiles of Development and Marketed Oral Drugs. Screws. Journal of Medical Chemistry, 46, 1250-1256.
https://doi.org/10.1021/jm021053p
[5]  Leeson, P.D. and Springthorpe, B. (2007) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Nature Reviews Drug Discovery, 6, 881-890.
https://doi.org/10.1038/nrd2445
[6]  Tan, D.S. (2005) Diversity-Oriented Synthesis: Exploring the Intersections between Chemistry and Biology. Nature Chemical Biology, 1, 74-84.
https://doi.org/10.1038/nchembio0705-74
[7]  Ertl, P., Rohde, B. and Selzer, P. (2000) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Journal of Medical Chemistry, 43, 3714-3717.
https://doi.org/10.1021/jm000942e
[8]  Affleck, R.L. (2001) Solutions for Library Encoding to Create Collections of Discrete Compounds. Current Opinion in Chemical Biology, 5, 257-263.
https://doi.org/10.1016/S1367-5931(00)00200-3
[9]  Allgäuer, D.S. and Mayr, H. (2013) One-Pot Two-Step Synthesis of 1-(Ethoxycarbonyl)indolizines via Pyridinium Ylides. European Journal of Organic Chemistry, 2013, 6379-6388.
https://doi.org/10.1002/ejoc.201300784
[10]  Albadejo, M.J., Alonso, F. and Yus, M. (2013) Synthesis of Indolizines and Heterocyclic Chalcones Catalyzed by Supported Copper Nanoparticles. Chemistry—A European Journal, 19, 5242-5245.
https://doi.org/10.1002/chem.201204305
[11]  Alcaide, B., Almendros, P., Alonso, J.M. and Aly, M.F. (2003) Useful Dual Diels-Alder Behavior of 2-Azetidinone-Tethered Aryl Imines as Azadienophiles or Azadienes: A β-Lactam-Based Stereocontrolled Access to Optically Pure Highly Functionalized Indolizidine Systems. Chemistry A European Journal, 9, 3415-3426.
https://doi.org/10.1002/chem.200304712
[12]  Abaszadeh, M. and Seifi, M. (2014) Ultrasound-Assisted 1,3-dipolar Cycloaddition and Cyclopropanation Reactions for the Synthesis of Bis-Indolizine and Bis-Cyclopropane Derivatives. Organic & Biomolecular Chemistry, 12, 7859-7863.
https://doi.org/10.1039/C4OB01305K
[13]  Belguedj, R., Bouacida, S., Merazig, H., Belfaitah, A. and Bouraiou, A. (2015) 1-(2’-Benzimidazolylmethyl)-pyridinium ylide in the One-Pot Synthesis of Indolizine and Benzimidazo[1,2-a]pyridine Derivatives. Zeitschrift für Naturforschung B, 70, 555-561.
https://doi.org/10.1515/znb-2015-0016
[14]  Bertallo, C.R.D.S., Arrojo, T.R., Toledo, M.F.Z.J., Sadler, S.A., Vessecchi, R., Steel, P.G. and Clososki, G.C. (2019) 1-(2’-Benzimidazolylmethyl)-pyridinium ylide in the One-Pot Synthesis of Indolizine and Benzimidazo[1,2-a]Pyridine Derivatives. European Journal of Organic Chemistry, 2019, 5205-5213.
https://doi.org/10.1002/ejoc.201900608
[15]  Campomolla, S.S., Lim, N. and Zhang, H. (2015) Single-Step Synthesis of 5,6,7,8-Tetrahydroindolizines via Annulation of 2-Formylpiperidine and 1,3-Dicarbonyl Compounds. Organic Letters, 17, 3564-3567.
https://doi.org/10.1021/acs.orglett.5b01671
[16]  Chandrashekharappa, S., Venugopala, K.N., Nayak, S.K.M., Gleiser, R., García D.A., Kumalo, H.M. and Odhav B. (2015) One-Pot Microwave Assisted Synthesis and Structural Elucidation of Novel Ethyl 3-substituted-7-methylindolizine-1-carboxylates with Larvicidal Activity against Anopheles arabiensis. Journal of Molecular Structure, 1156, 377-384.
https://doi.org/10.1016/j.molstruc.2017.11.131
[17]  He, L., Yang, Y., Liu, X., Liang, G., Li, C., Wang, D. and Pan, W. (2015) Iodine-Mediated Oxidative Cyclization of 2-(Pyridin-2-yl)acetate Derivatives with Alkynes: Condition-Controlled Selective Synthesis of Multisubstituted Indolizines. Synthesis, 52, 459-470.
https://doi.org/10.1055/s-0039-1690229
[18]  Jadhay, A.H., Atar, A.B. and Kang, J. (2015) A [bmim]Cl-Promoted Domino Protocol Using an Isocyanide-Based [4+1]-cycloaddition Reaction for the Synthesis of Diversely Functionalized 3-alkylamino-2-alkyl/aryl/hetero-aryl Indolizine-1-carbonitriles under Solvent-Free Conditions. New Journal of Chemistry, 44, 3241-3248.
https://doi.org/10.1039/C9NJ05738B
[19]  Kim, H., Kim, S., Son, J., Baek, Y., Um, K. and Lee, P.H. (2017) One-Pot Synthesis of Indolizines via Sequential Rhodium-Catalyzed [2+1]-Cyclopropanation, Palladium-Catalyzed Ring Expansion, and Oxidation Reactions from Pyridotriazoles and 1,3-Dienes. Organic Letters, 19, 5677-5680.
https://doi.org/10.1021/acs.orglett.7b02826
[20]  Varadi, A., Marrone, G.F., Palmer, T.C., Narayan, A., Szabó, M.R., LeRouzic, V., Grinell, S.G., Subrath, J.J., Warner, E, Kalra, S., Hunkele, A., Pagirsky, J., Eans, S.O., Medina, J.M., Xu, J., Pan, Y.-X., Borics, A., Pasterrak, G.W., MacLaughlin, J.P. and Majumderar, S. (2017) Mitragynine/Corynantheidine Pseudoindoxyls as Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. Journal of Medicinal Chemistry, 59, 8381-8397.
https://doi.org/10.1021/acs.jmedchem.6b00748
[21]  Kallay, K.R. and Doerge, R.F. (1972) p-Substituted 1,2-Diphenylindolizines as Anti-Inflammatory Agents. Journal of Pharmaceutical Sciences, 61, 949-951.
https://doi.org/10.1002/jps.2600610629
[22]  Kitadokoro, K., Hagishita, S., Sato, T., Ohtani, M. and Miki, K. (1998) Crystal Structure of Human Secretory Phospholipase A2-IIA Complex with the Potent Indolizine Inhibitor 120-1032. The Journal of Biochemistry, 123, 619-623.
https://doi.org/10.1093/oxfordjournals.jbchem.a021982
[23]  Oslund, R.C., Cermak, N. and Gelb, M.H. (2008) Highly Specific and Broadly Potent Inhibitors of Mammalian Secreted Phospholipases A2. Journal of Medicinal Chemistry, 51, 4708-4714.
https://doi.org/10.1021/jm800422v
[24]  Dawood, K.M., Abdel-Gawad, H., Ellithey, M., Mohamed, H.A. and Hegazi, B. (2006) Synthesis, Anticonvulsant, and Anti-Inflammatory Activities of Some New Benzofuran-Based Heterocycles. Archiv der Pharmazie, 339, 133-140.
https://doi.org/10.1002/ardp.200500176
[25]  Gundersen, L.L., Charnock, C., Negussie, A.H., Rise, F. and Teklu, S. (2007) Synthesis of Indolizine Derivatives with Selective Antibacterial Activity against Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 30, 26-35.
https://doi.org/10.1016/j.ejps.2006.09.006
[26]  Huang, W., Zuo, T., Jin, H., Liu, Z., Yang, Z., Yu, X., Zhang, L. and Zhang, L. (2013) Design, Synthesis, and Biological Evaluation of Indolizine Derivatives as HIV-1 VIF–ElonginC Interaction Inhibitors. Molecular Diversity, 17, 221-243.
https://doi.org/10.1007/s11030-013-9424-3
[27]  Teklu, S., Gundersen, L.L., Rise, F. and Tilset, M. (2005) Electrochemical Studies of Biologically Active Indolizines. Tetrahedron, 61, 4643-4656.
https://doi.org/10.1016/j.tet.2005.02.078
[28]  Antonini, I., Claudi, F, Gulini, U., Micossi, L. and Venturi, F. (1979) Indolizine Derivatives with Biological Activity IV: 3-(2-Aminoethyl)-2-methylindolizine, 3-(2-aminoethyl)-2-methyl-5,6,7,8-tetrahydroindolizine, and Their Iv-Alkyl Derivatives. Journal of Pharmaceutical Sciences, 68, 321-324.
https://doi.org/10.1002/jps.2600680317
[29]  De, A.U. and Saha, B.P. (1973) Search for Potential Oral Hypoglycemic Agents: Synthesis and Activity of 2-(Af-Alkylaminomethyl) Indolizines. Journal of Pharmaceutical Sciences, 62, 1897-1898.
https://doi.org/10.1002/jps.2600621142
[30]  De, A.U. and Saha, B.P. (1975) Indolizines II: Search for Potential Oral Hypoglycemic Agents. Journal of Pharmaceutical Sciences, 64, 249-252.
https://doi.org/10.1002/jps.2600640211
[31]  Narajji, C., Karvekar, M.D. and Das, A.K. (1975) Synthesis and Antioxidant Activity of 3,3’-diselanediylbis (N,N-disubstituted indolizine-1-carboxamide) and Derivatives. South African Journal of Chemistry, 61, 53-55.
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0379-43502008000100011&lng=en&tlng=en
[32]  James, D.A., Koya, K., Li, H., Liang, G., Xia, Z., Ying, W., Wu, Y. and Sun, L.J. (2008) Indole- and Indolizine-Glyoxylamides Displaying Cytotoxicity against Multidrug Resistant Cancer Cell Lines. Bioorganic & Medicinal Chemistry Letters, 18, 1784-1787.
https://doi.org/10.1016/j.bmcl.2008.02.029
[33]  Shen, Y.M., Lv, P.C., Chen, W., Liu, P.G., Zhang, M.Z. and Zhu, H.L. (2010) Synthesis and Antiproliferative Activity of Indolizine Derivatives Incorporating a Cyclopropylcarbonyl Group against Hep-G2 Cancer Cell Line. European Journal of Medicinal Chemistry, 45, 3184-3190.
https://doi.org/10.1016/j.ejmech.2010.02.056
[34]  Marco, E., Laine, W., Tardy, C., Lansiaux, A., Iwao, M., Ishibashi, F., Bailly, C. and Gago, F. (2005) Molecular Determinants of Topoisomerase I Poisoning by Lamellarins: Comparison with Camptothecin and Structure-Activity Relationships. European Journal of Medicinal Chemistry, 48, 3796-3807.
https://doi.org/10.1021/jm049060w
[35]  Li, G., Wu, X., Sun, P., Zhang, Z., Shao, E., Mao, J., Cao, H. and Huang, H. (2021) Dithiolation Indolizine Exerts Viability Suppression Effects on A549 Cells via Triggering Intrinsic Apoptotic Pathways and Inducing G2/M Phase Arrest. Biomedicine & Pharmacotherapy, 133, 110961.
https://doi.org/10.1016/j.biopha.2020.110961
[36]  Penteado, F., Gómez, C.S., Monzón, L.I., Perin, G., Silveira, C.C. and Lenardao, E. (2020) Photocatalytic Synthesis of 3-Sulfanyl- and 1,3-Bis(sulfanyl)indolizines Mediated by Visible Light. European Journal of Medicinal Chemistry, 2020, 2110-2115.
https://doi.org/10.1002/ejoc.202000162
[37]  Ramesh, V., Devi, N.S., Velusamy, M. and Shanmugan, S. (2019) Catalyst free Synthesis of Highly Functionalized Indolizines from in Situ Generated Pyridinium Ylides via One-Pot Multicomponent Reaction. Chemistry Select, 4, 3717-3721.
https://doi.org/10.1002/slct.201900665
[38]  Rani, P., Siril, P.F. and Srivastava, R. (2017) Cu Nanoparticles Decorated Cu Organic Framework Based Efficient and Reusable Heterogeneous Catalyst for Coupling Reactions. Molecular Catalysis, 433, 100-110.
https://doi.org/10.1016/j.mcat.2016.12.009
[39]  Corona, D., Díaz, E., Barrios, H., Sánchez, E., Alvarado C., Jankowski, C.K. and Guzmán, A. (2009) 2D 1H and 13C NMR Conformational Studies of Thienopyridines and Carboline Biarylic Compounds. Spectrochimica Acta Part A, 74, 515-525.
https://doi.org/10.1016/j.saa.2009.06.060
[40]  Corona, D., Díaz, E., Guzmán, A. and Jankowski, C.K. (2005) Synthesis, Proton and 13C NMR and Reaction Mechanism Studies of Novel Isoindolones Derivatives, Obtained through TAWERS Procedure. Spectrochimica Acta Part A, 61, 2788-2795.
https://doi.org/10.1016/j.saa.2004.10.025

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133