全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fine Tuning of Real Time PCR as a First Tool for the Detection of G143A Substitution in Venturia inaequalis Samples

DOI: 10.4236/ajps.2021.126065, PP. 960-974

Keywords: Venturia inaequalis, qPCR, Strobilurin, Cytochrome b

Full-Text   Cite this paper   Add to My Lib

Abstract:

Apple scab caused by Venturia inaequalis (Cke.) Wint. is the most important disease of apple trees worldwide and requires a high number of fungicide applications. The G143A substitution in the inhibitor binding site of cytochrome b of V. inaequalis confers a high level of resistance to strobilurins targeting the bc1 complex. The aim of this work was to substitute the labor intensive in vitro assays, with the faster quantitative PCR. An allele-specific qPCR method with a newly designed primer set was successfully developed to quantitatively determine the frequency of QoI-resistant A143 allele in populations of V. inaequalis. To be able to suggest that the molecular method could be applied as unique and robust technique, we carried out in vitro sensitivity test to trifloxystrobin; first testing the relative germination and subsequently confirmed with the quantification of mutated allele frequencies by qPCR on forty-nine Italian V. inaequalis populations. qPCR gave a similar pattern to that obtained using in vitro conidial germination test in predominantly sensitive and resistant populations, the variability between these two tests was observed in some heterogeneous populations. The qPCR assay developed in this study efficiently quantifies the A143 allele and we can conclude that this method could be useful for the study of the fungicide resistance at population level in the fields, giving a quick response also with a large amount of samples.

References

[1]  Fiaccadori, R., Gielink, A. and Dekker, J. (1987) Sensitivity to Inhibitors of Sterol Biosyntesis in Isolates of Venturia inaequalis from Italian and Dutch Orchards. Netherland Journal of Plant Pathology, 93, 285-287.
https://doi.org/10.1007/BF01998204
[2]  Ammermann, E., Lorenz, G., Schelberger, K., Wenderoth, B., Sauter, H. and Rentzea, C. (1992) BAS 490F—A Broad-Spectrum Fungicide with a New Mode of Action. Proceedings of the 1992 Brighton Crop Protection Conference-Pests and Disease, 1, 403-410.
[3]  Sauter, H. and Ammermann, E. (1996) Strobilurins from Natural Products to a New Class of Fungicides. In: Copping, L.G., Ed., Crop Protection Agents from Nature: Natural Products and Analogues, The Royal Society of Chemistry, Cambridge, 50-81.
[4]  Brunelli, A., Gianati, P. and Flori, P. (2002) Verifiche sperimentali sull’attività di recenti fungicidi contro la ticchiolatura del melo. Atti Giornate Fitopatologiche, 2, 215-226.
[5]  Gisi, U., Chin, K.M., Knapova, G., Farber, R.K., Mohr, U., Parisi, S., Sierotski, H. and Steinfeld, U. (2000) Recent Developments in Elucidating Modes of Resistance to Phenylamide, DMI, and Strobilurin Fungicides. Crop Protection, 19, 863-872.
https://doi.org/10.1016/S0261-2194(00)00114-9
[6]  Heaney, S.P., Hall, A.A, Davis, S.A. and Olaya, G. (2000) Resistance to Fungicides in the QoI-STAR Cross Resistance Group: Current Perspectives. Proceedings of the 2000 Brighton Crop Protection Conference-Pests and Disease, Brighton, 18-21 November 2000, 755-762.
[7]  Bartlett, D.W., Clough, J.M., Godwin, J.R., Hall, A.A., Hamer, M. and Parr-Dobrzanski, B. (2002) The Strobilurin Fungicides. Pest Management Science, 58, 649-662.
https://doi.org/10.1002/ps.520
[8]  Gisi, U., Sierotzki, H., Cook, A. and McCaffery, A. (2002) Mechanisms Influencing the Evolution of Resistance to QoI Inhibitor Fungicides. Pest Management Science, 58, 859-867.
https://doi.org/10.1002/ps.565
[9]  Sierotzki, H., Frey, R., Wullschleger, J., Palermo, S., Karlin, S., Godwin, J. and Gisi, U. (2006) Cytochrome b Gene Sequence and Structure of Pyrenophora teres and P. tritici-repentis and Implications for QoI Resistance. Pest Management Science, 63, 225-233.
https://doi.org/10.1002/ps.1330
[10]  Zheng, D., Olaya, G. and Koller, W. (2000) Characterization of Laboratory Mutants of Venturia inaequalis Resistant to the Strobilurin-Related Fungicide Kresoxim-Methyl. Current Genetics, 38, 148-155.
https://doi.org/10.1007/s002940000147
[11]  Sierotzki, H., Wullschleger, J. and Gisi, U. (2000) Point Mutation in Cytochrome b Gene Conferring Resistance to Strobilurin Fungicides in Erysiphe graminis f. sp. tritici Field Isolates. Pesticide Biochemistry and Physiology, 68, 107-112.
https://doi.org/10.1006/pest.2000.2506
[12]  Ishii, H., Fraaije, B.A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T., Amano, T. and Hollomon, D.W. (2001) Occurrence and Molecular Characterization of Strobilurin Resistance in Cucumber Powdery Mildew and Downy Mildew. Phytopathology, 91, 1166-1171.
https://doi.org/10.1094/PHYTO.2001.91.12.1166
[13]  Pasche, J.S., Wharam, C.M. and Gudmestad, N.C. (2002) Shift in Sensitivity of Alternaria solani (Potato Early Blight) to Strobilurin Fungicides. Proceedings of the 2000 Brighton Crop Protection Conference-Pests and Disease, Brighton, 18-21 November 2000, 841-846.
[14]  Lu, Y.L., Sutton, T.B. and Ypema, H. (2003) Sensitivity of Alternaria mali from North Carolina Apple Orchards to Pyraclostrobin and Boscalid. Phytopathology, 93, s54.
[15]  Ma, Z., Felts, D. and Michailides, T.J. (2003) Resistance to Azoxystrobin in Alternaria Isolates from Pistachio in California. Pesticide Biochemistry and Physiology, 77, 66-74.
https://doi.org/10.1016/j.pestbp.2003.08.002
[16]  Olaya, G., Zheng, D. and Koller, W. (1998) Differential Responses of Germinating Venturia inaequalis Conidia to Kresoxim-Methyl. Pesticide Science, 54, 230-236.
https://doi.org/10.1002/(SICI)1096-9063(1998110)54:3%3C230::AID-PS815%3E3.0.CO;2-O
[17]  Kung Farber, R.B., Chin, M.K. and Leadbitter, N. (2002) Sensitivity of Venturia inaequalis to Trifloxystrobin. Pest Management Science, 58, 261-267.
https://doi.org/10.1002/ps.443
[18]  Kuck, K.H. and Mehl, A. (2003) Trifloxstrobin: Resistance Risk and Resistance Management. Pflanzenschutz Nachrichten Bayer, 56, 313-325.
[19]  Wood, P.M. and Hollomon, D.W. (2003) A Critical Evaluation of the Role of Alternative Oxidase in the Performance of Strobilurin and Related Fungicides Acting at the Qo Site of Complex III. Pest Management Science, 59, 499-511.
https://doi.org/10.1002/ps.655
[20]  Steinfeld, U., Sierotzki, H., Parisi, S., Poirey, S. and Gisi, U. (2001) Sensitivity of Mitochondrial Respiration to Different Inhibitors in Venturia inaequalis. Pest Management Science, 57, 787-796.
https://doi.org/10.1002/ps.356
[21]  Jabs, T., Cronshaw, K. and Freund, A. (2001) New Strobilurin Resistance Mechanism in Apple Scab (Venturia inaequalis). Phytomedizin, 31, 15-16.
[22]  Fiaccadori, R., Cicognani, E., Abbatecola, M., Collina, M. and Brunelli, A. (2005) Sensitivity of Venturia inaequalis to Strobilurin Fungicides in Italy. Agricultural and Applied Biological Sciences, 70, 73-78.
[23]  Sallato, B.V., Lattore, B.A. and Aylwin, G. (2006) First Report of Practical Resistance to QoI Fungicides in Venturia inaequalis (Apple Scab) in Chile. Plant Disease, 90, 375.
https://doi.org/10.1094/PD-90-0375A
[24]  Fontaine, S., Remuson, F., Fraissinet-Tachet, L., Micoud, A., Marmeisse, R. and Melayah, D. (2008) Monitoring of Venturia inaequalis Harbouring the QoI Resistance G143A Mutation in French Orchards as Revealed by PCR Assays. Pest Management Science, 65, 74-81.
https://doi.org/10.1002/ps.1649
[25]  Fiaccadori, R., Cicognani, E., Collina, M. and Brunelli, A. (2011) Sensitivity to Strobilurin Fungicides of Italian Venturia inaequalis Populations with Different Origin and Scab Control. Pest Management Science, 67, 535-540.
https://doi.org/10.1002/ps.2090
[26]  Fraaije, B.A., Butters, J.A., Coelho, J.M., Jones, D.R. and Hollomon, D.W. (2002) Following the Dynamics of Strobilurin Resistance in Blumeria graminis f.sp. tritici Using Quantitative Allele-Specific Real-Time PCR Measurements with the Fluorescent Dye SYBR Green. Journal of Plant Pathology, 51, 45-54.
https://doi.org/10.1046/j.0032-0862.2001.00650.x
[27]  Luo, Y., Ma, Z., Reyes, H.C., Morgan, D.P. and Michailides, T.J. (2007) Using Real-Time PCR to Survey Frequency of Azoxystrobin-Resistant Allele G143A in Alternaria Populations from Almond and Pistachio Orchards in California. Pesticide Biochemistry and Physiology, 88, 328-336.
https://doi.org/10.1016/j.pestbp.2007.01.009
[28]  Fraaije, B.A., Cools, H.J., Fountaine, J., Lovell, D.J., Motteram, J., West, J.S. and Lucas, J.A. (2005) Role of Ascospores in Further Spread of QoI-Resistant Cytochrome b Alleles (G143A) in Field Populations of Mycospaerella graminicola. Phytopathology, 95, 933-941.
https://doi.org/10.1094/PHYTO-95-0933
[29]  Sirven, C. and Beffa, R. (2003) Resistance to Fenamidone: Monitoring by Real Time PCR on Plasmopara viticola. Pflanzenschutz Nachrichten Bayer, 56, 523-532.
[30]  Collina, M., Landi, L., Guerrini, P., Branzanti, M.B. and Brunelli, A. (2005) QoI Resistance of Plasmopara viticola in Italy: Biological and Quantitative Real-Time PCR Approaches. In: Dehne, H.W., Gisi, U., Kuck, K.H., Russell, P.E. and Lyr, H., Eds., Modern Fungicides and Antifungal Compounds IV, British Crop Production Council, Alton, 81-88.
[31]  Kianianmomeni, A., Schwarz, G., Felsenstein, F.G. and Wenzel G. (2007) Validation of a Real-Time PCR for the Quantitative Estimation of a G143A Mutation in the cytochrome bc1 Gene of Pyrenophora teres. Pest Management Science, 63, 219-224.
https://doi.org/10.1002/ps.1290
[32]  Dufour, M.C., Fontaine, S., Montarry, J. and Corio-Costet, M.F. (2011) Assessment of Fungicide Resistance and Pathogen Diversity in Erysiphe necator Using Quantitative Real-Time PCR Assays. Pest Management Science, 67, 60-69.
https://doi.org/10.1002/ps.2032
[33]  Wille, P., Sierotzki, H., Stanger, C., Cleere, S., Burbidge, J., Hall, A., Wind-ass, J. and Gisi, U. (2002) Qualitative and Quantitative Identification of SNPs in Plant Pathogens. In: Dehne, H.W., Gisi, U., Kuck, K.H., Russell, PE. and Lyr, H., Eds., Modern Fungicides and Antifungal Compounds III, British Crop Production Council, Alton, 131-139.
[34]  Turan, C., Nanni, I.M., Brunelli, A. and Collina M. (2015) New Rapid DNA Extraction Method with Chelex from Venturia inaequalis Spores. Journal of Microbiological Methods, 115, 139-143.
https://doi.org/10.1016/j.mimet.2015.06.005
[35]  Michalecka, M., Malinowski, T., Broniarek-Niemiec, A. and Bielenin, A. (2011) Real-Time PCR Assay with SNP-Specific Primers for the Detection of a G143A Mutation Level in Venturia inaequalis Field Populations. Journal of Phytopathology, 159, 569-578.
https://doi.org/10.1111/j.1439-0434.2011.01805.x
[36]  Villiani, S.M. and Cox, K.D. (2014) Heteroplasmy of the Cytochrome b Gene in Venturia inaequalis and Its Involvement in Quantitative and Practical Resistance to Trifloxystrobin. Phytopathology, 104, 945-953.
https://doi.org/10.1094/PHYTO-06-13-0158-R
[37]  Turan, C., Nanni, I.M., Tosun, N. and Collina, M. (2015) First Report of QoI Resistance in Venturia inaequalis Causing Apple Scab in Apple Orchards in Turkey. Plant Disease, 100, 1016.
https://doi.org/10.1094/PDIS-10-15-1139-PDN
[38]  Jaklova, P., Kloutvorova, J. and Cmejla, R. (2000) A Real-Time PCR Quantitative Analysis of the Venturia inaequalis cytb Gene G143A Mutation and Its Prevalence in the Czech Republic. European Journal of Horticulture Science, 85, 169-175.
https://doi.org/10.17660/eJHS.2020/85.3.4
[39]  Koller, W., Parker, D.M., Turechek, W.W. and Avile-Adam, C. (2004) A Two-Phase Resistance Response of Venturia inaequalis Populations to the QoL Fungicides Kresoxim-Methyl and Trifloxystrobin. Plant Disease, 88, 537-544.
https://doi.org/10.1094/PDIS.2004.88.5.537
[40]  Bustin, S., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. and Wittwer C. (2009) The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55, 611-622.
https://doi.org/10.1373/clinchem.2008.112797
[41]  Aylor, D.E. and Sutton, T.B. (1992) Release of Venturia inaequalis Ascospores during Unsteady Rain: Relationship to Spore Transport and Deposition. Phytopathology, 82, 532-540.
https://doi.org/10.1094/Phyto-82-532
[42]  McHardy, W.E. (1996) Apple Scab: Biology, Epidemiology and Management. The American Phytopathological Society, St Paul.
[43]  Rusell, P.E. (2002) Sensitivity Baselines in Fungicide Resistance Research and Management. In: FRAC Monograph, No. 3, Crop Life International, Brussels, 328-330.
[44]  Fernandez-Ortuno, D., Tores, J.A., Vicente, A. and Perez-Garcia, A. (2008) Mechanisms of Resistance to QoI Fungicides in Phytopathogenic Fungi. International Microbiology, 11, 1-9.
[45]  Gisi, U. and Sierotzki, H. (2008) Molecular and Genetic Aspects of Fungicide Resistance in Plant Pathogens. In: Dehne, H.W., Gisi, U., Kuck, K.H., Russell, P.E. and Lyr, H., Eds., Modern Fungicides and Antifungal Compounds V, 53-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133