全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling of a Two-Phase Thermosyphon Loop for Passive Air-Conditioning of a House in Hot and Dry Climate Countries

DOI: 10.4236/epe.2021.136017, PP. 243-260

Keywords: Two-Phase Thermosiphon Loop, Modelling, Passive Air Conditioning, Thermal Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23°C to 13°C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2°C and 29°C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.

References

[1]  Huang, Y. and Li, C. (2021) Accurate Heating, Ventilation and Air Conditioning System Load Prediction for Residential Buildings Using Improved Ant Colony Optimization and Wavelet Neural Network. Journal of Building Engineering, 35, Article ID: 101972.
https://doi.org/10.1016/j.jobe.2020.101972
[2]  Opoku, R., Mensah-Darkwa, K. and Samed Muntaka, A. (2018) Techno-Economic Analysis of a Hybrid Solar PV-Grid Powered Air-Conditioner for Daytime Office Use in Hot Humid Climates—A Case Study in Kumasi City, Ghana. Solar Energy, 165, 65-74.
https://doi.org/10.1016/j.solener.2018.03.013
[3]  Charbonneau, J.Y., Douville, S., Schreiber, L. and Lemaire, J. (2004) Confort thermique à l’intérieur d’un établissement. Commission de la santé et de la sécurité du travail du Québec, Direction de la prévention-inspection, Direction des communications.
[4]  Cao, J., Hong, X., Zheng, Z., Asim, M., Wang, Q. and Leung, M.K. (2020) Performance Characteristics of Variable Conductance Loop Thermosyphon for Energy-Efficient Building Thermal Control. Applied Energy, 275, Article ID: 115337.
https://doi.org/10.1016/j.apenergy.2020.115337
[5]  Samba, A., Hasna, L.G., Le Masson, S. and Nörterhäuser, D. (2013) Two-Phase Thermosyphon Loop for Cooling Outdoor Telecommunication Equipments. Applied Thermal Engineering, 50, 1351-1360.
https://doi.org/10.1016/j.applthermaleng.2012.05.023
[6]  Han, L., Shi, W., Wang, B., Zhang, P. and Li, X. (2013) Development of an Integrated Air Conditioner with Thermosyphon and the Application in Mobile Phone Base Station. International Journal of Refrigeration, 36, 58-69.
https://doi.org/10.1016/j.ijrefrig.2012.09.012
[7]  Zhu, L., Yang, Y., Chen, S. and Sun, Y. (2019) Thermal Performances Study on a Façade-Built-In Two-Phase Thermosyphon Loop for Passive Thermo-Activated Building System. Energy Conversion and Management, 199, Article ID: 112059.
https://doi.org/10.1016/j.enconman.2019.112059
[8]  Tong, Z., Liu, X. and Jiang, Y. (2017) Experimental Study of the Self-Regulating Performance of an R744 Two-Phase Thermosyphon Loop. Applied Energy, 186, 1-12.
https://doi.org/10.1016/j.apenergy.2016.10.121
[9]  Ding, T., He, Z.G., Hao, T. and Li, Z. (2016) Application of Separated Heat Pipe System in Data Center Cooling. Applied Thermal Engineering, 109, 207-216.
https://doi.org/10.1016/j.applthermaleng.2016.08.025
[10]  Khodabandeh, R. (2004) Thermal Performance of a Closed Advanced Two-Phase Thermosyphon Loop for Cooling of Radio Base Stations at Different Operating Conditions. Applied Thermal Engineering, 24, 2643-2655.
https://doi.org/10.1016/j.applthermaleng.2004.05.006
[11]  Chehade, A., Lemasson, S. and Louhahlia-Gualous, H. (2013) Etude des Performances Thermiques d’une Boucle Diphasique Fonctionnant avec un Nanofluide. 21ème Congrès Français de mécanique, Bordeaux.
[12]  Zhang, P., Wang, B., Shi, W., Han, L. and Li, X. (2015) Modeling and Performance Analysis of a Two-Phase Thermosyphon Loop with Partially/Fully Liquid-Filled Downcomer. International Journal of Refrigeration, 58, 172-185.
https://doi.org/10.1016/j.ijrefrig.2015.06.014
[13]  Camara, Y., Chesneau, X. and Kanté, C. (2018) Etude numérique du confort thermique dans un habitat bioclimatique en brique de terre stabilisée pour un climat type de la Guinée. Afrique Science, 14, 238-254.
[14]  Oudrane, A., Aour, B., Zeghmati, B., Chesneau, X. and Hamouda, M. (2017) Analyse numerique de transfert thermique unidimensionnel d’une enceinte habitable desertique. Recueil de Mécanique, 2, 89-102.
[15]  Khalifa, A.J.N. (2001) Natural Convective Heat Transfer Coefficient—A Review: I. Isolated Vertical and Horizontal Surfaces. Energy Conversion and Management, 42, 491-504.
https://doi.org/10.1016/S0196-8904(00)00042-X
[16]  Salem, M.A.E.M. (2010) Experimental Study for Transient Response of a Double-Tube Thermosyphon (DTTH). Thèse de Doctorat à Al-Azhar Universty, Cairo, Egypt.
[17]  Naresh, Y. and Balaji, C. (2018) Thermal Performance of an Internally Finned Two Phase Closed Thermosyphon with Refrigerant R134a: A Combined Experimental and Numerical Study. International Journal of Thermal Sciences, 126, 281-293.
https://doi.org/10.1016/j.ijthermalsci.2017.11.033

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133