全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Barents Sea Ice Edge Positions in the Last 442 Years. Part 2: Sun, Moon and Planets

DOI: 10.4236/ijaa.2021.112015, PP. 279-341

Keywords: Barents Sea Ice Edge Position, Cyclic and Non-Linear Changes, Lunar and Solar Forcing, Planetary Orbit Synchronization

Full-Text   Cite this paper   Add to My Lib

Abstract:

This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs, polar expeditions, and hunters in addition to airplanes and satellites in recent times. Our main result is that the BIE position alternates between a southern and a northern position followed by Gulf Stream Beats (GSBs) at the occurrence of deep solar minima. We decompose the low frequency BIE position variations in cycles composed of dominant periods which are related to the Jose period of 179 years, indicating planetary forcings. We propose that the mechanism transferring planetary signals into changes in BIE position is the solar wind (SW), which provides magnetic shielding of the Earth in addition to geomagnetic disturbances. Increase in the solar wind produces pressure which decelerates the Earth’s rotation. It also transfers electrical energy to the ring current in the earth’s magnetosphere. This current magnetizes the earth’s solid core and makes it rotate faster. To conserve angular momentum the earth’s outer fluid mantle rotates slower with a delay of about 100 years. In addition will geomagnetic storms, initiated by solar coronal mass ejections (CMEs) penetrate deep in the Earth’s atmosphere and change pressure pattern in the Arctic. This effect is larger during solar minima since the magnetic shielding then is reduced. The Arctic may then experience local warming. The transition of solar activities to a possibly deep and long minimum in the present century may indicate Arctic cooling and the BIE moving south this century. For the North Atlantic region, effects of the BIE expanding southward will have noticeable consequences for the ocean bio-production from about 2040.

References

[1]  Mörner, N.A., Solheim, J.-E., Humlum, O. and Falk-Petersen, S. (2020) Changes in Barents Sea Ice Edge Positions in the Last 440 Years: A Review of Possible Driving Forces. International Journal of Astronomy and Astrophysics, 10, 97-164.
https://doi.org/10.4236/ijaa.2020.102008
[2]  Ikeda, M. (1990) Decadal Oscillations of the Air-Ice-Ocean System in the Northern Hemisphere. Atmosphere-Ocean, 28, 106-139.
https://doi.org/10.1080/07055900.1990.9649369
[3]  Loeng, H.V. (1991) Features of the Physical Oceanographic Conditions of the Barents Sea. Polar Research, 10, 5-18. https://doi.org/10.3402/polar.v10i1.6723
[4]  Falk-Petersen, S., Pavlov, V., Timofeev, S. and Sargent, J. (2007) Climate Variability and Possible Effects on Arctic Food Chains: The Role of Calanus. In: Ørbæk, J.B., Tombre, T., Kallenborn, R., Hegseth, E., Falk-Petersen, S. and Hoel, A.H., Eds., Arctic Alpine Ecosystems and People in a Changing Environment, Springer, Berlin, 147-166. https://doi.org/10.1007/978-3-540-48514-8_9
[5]  Muilwijk, M., Smedsrud, L.H., Ilicak, M. and Drange, H. (2018) Atlantic Water Heat Transport Variability in the 20th Century Arctic Ocean from a Global Ocean Model and Observations. Journal of Geophysical Research: Oceans, 123, 8159-8179.
https://doi.org/10.1029/2018JC014327
[6]  Spielhagen, R.F., Werner, K., Aagaard Sørensen, S., Zamelczyk, K., Kandiano, E., et al. (2011) Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water. Science, 331, 450-453. https://doi.org/10.1126/science.1197397
[7]  Smedsrud, L.H., Esau, I., Ingvaldsen, R.B., Eldervik, T., Haugan, O.M., et al. (2013) The Role of the Barents Sea in the Arctic Climate System. Reviews of Geophysics, 51, 1-35.
https://doi.org/10.1002/rog.20017
[8]  Lique, C. and Steele, M. (2012) Where Can We Find a Sesonal Cycle of the Atlantic Water Temperature Within the Arctic Basin? Journal of Geophysical Research: Oceans, 117, C03026.
https://doi.org/10.1029/2011JC007612
[9]  Falk-Petersen, S, Pavlov, V., Berge, J., Cottier, F., Kovacs, K.M. and Lydersen, C. (2015) At the Rainbow’s End: High Productivity Fueled by Winter Upwelling along an Arctic Shelf. Polar Biology, 38, 5-11. https://doi.org/10.1007/s00300-014-1482-1
[10]  Nansen, F. (1924) Blant Selog Bjørn (in Norwegian). Jacob Dybwad forlag, Kristiania.
[11]  Oziel, L., Neukermans, G., Ardyna, M., Lancelot, C., Tison, J.-L., Wassmann, P., et al. (2017) Role for Atlantic Inflows and Sea Ice Loss on Shifting Phytoplankton Blooms in the Barents Sea. Journal of Geophysical Research: Oceans, 122, 5121-5139.
https://doi.org/10.1002/2016JC012582
[12]  Usoskin, I.G., Solanki, S.K. and Kovaltsov, G.A. (2007) Grand Minima and Maxima of Solar Activity: New Observational Constraints. Astronomy and Astrophysics, 471, 301-309.
https://doi.org/10.1051/0004-6361:20077704
[13]  Ljungquist, F.C. (2010) A New Reconstruction of Temperature Variability in the Extra-Tropical Northern Hemisphere during the Last Two Millennia. Geografiska Annaler, 92, 339-351.
https://doi.org/10.1111/j.1468-0459.2010.00399.x
[14]  Mörner, N.-A. (2010) Solar Minima, Earth’s Rotation and Little Ice Ages in the Past and in the Future the North Atlantic-European Case. Global and Planetary Change, 72, 282-293. https://doi.org/10.1016/j.gloplacha.2010.01.004
[15]  Solheim, J.-E. (2013) The Sunspot Cycle Length—Modulated by Planets? Pattern Recognition in Physics, 1, 154-164. https://doi.org/10.5194/prp-1-159-2013
[16]  Vinje, T. (1999) Barents Sea Ice Edge Variation over the Past 400 Years. Proceedings of the Workshop on Sea-Ice Charts of the Arctic, Seattle, 5-7 August 1998, WMO/TD No. 949, 4-6.
[17]  Vinje, T. (2001) Anomalies and Trends of Sea-Ice Extent and Atmospheric Circulation in the Nordic Seas during the Period 1864-1998. Journal of Climate, 14, 255-267.
https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2
[18]  Løyning, T.B., Dick, C., Goodwin, H., Pavlova, O., Vinje, T., Kjærnli, G. and Villinger, T. (2003) World Climate Research Programme, Arctic Climate System Study, ACSYS Historical Ice Chart Archive (1553-2002). IACPO Informal Report, 8.
[19]  Cavalieri, D.J., Parkinson, C.L., Gloersen, P., Comiso, J.C. and Zwally, H.J. (1999) Deriving Long-Term Time Series of Sea Ice Cover from Satellite Passive-Microwave Multisensor Data Sets. Journal of Geophysical Research, 104, 15,803-15,814.
https://doi.org/10.1029/1999JC900081
[20]  Fetterer F., Knowles, K., Meier, W.N., Savoie, M. and Windnagel, A.K. (2017) Sea Ice Index, Version 3. National Snow & Ice Data Center.
[21]  Ivanova, N., Pedersen, L.T., Tonboe, R.T., Kern, S., Heygster, G., Lavergne, T., et al. (2015) Inter-Comparison and Evaluation of Sea Ice Algorithms: Towards Further Identification of Challenges and Optimal Approach Using Passive Microwave Observations. The Cryosphere, 9, 1797-1817.
https://doi.org/10.5194/tc-9-1797-2015
[22]  Connolly, R., Connolly, M. and Soon, W. (2017) Re-Calibration of Arctic Sea Ice Extent Datasets Using Arctic Surface Air Temperature Records. Hydrological Sciences Journal, 62, 1317-1340. https://doi.org/10.1080/02626667.2017.1324974
[23]  Humlum, O. (2021) Climate+History. http://www.climate4you.com
[24]  Röst, W. (2021) Private Communication.
https://nl.wikipedia.org/wiki/Rede_van_Vlieland
[25]  Nansen, F. (1902) Oceanography of the North Polar basin. The Norwegian North Polar Expedition 1893-1896 Scientific Results. Greenwood Press, New York.
[26]  Falk-Petersen, S., Hop, H., Budgell, W.P., Hegseth, E.N., Korsnes, R., Løyning, T.B., et al. (2000) Physical and Ecological Processes in the Marginal Ice Zone of the Northern Barents Sea during the Summer Melt Periods. Journal of Marine Systems, 27, 131-159.
https://doi.org/10.1016/S0924-7963(00)00064-6
[27]  Saloranta, T.M. and Svendsen, H. (2001) Across the Arctic Front West of Spitsbergen: High-Resoolution CTD Sections from 1998-2000. Polar Research, 20, 177-184.
https://doi.org/10.3402/polar.v20i2.6515
[28]  Mörner, N.-A. (1996) Global Change and Interaction of Earth Rotation Ocean Circulation and Paleoclimate. Annals of the Brazilian Academy of Sciences, 68, 77-94.
[29]  Smedsrud, L.H., Ingvaldsen, R., Nilsen, E.Ø. and Skagseth, Ø. (2010) Heat in the Barents Sea: Transport, Storage and Surface Fluxes. Ocean Science, 6, 219-234.
https://doi.org/10.5194/os-6-219-2010
[30]  Lind, S. and Ingvaldsen, R. (2012) Variability and Impacts of Atlantic Water Entering the Barents Sea from the North. Deep Sea Research, Part I, 62, 70-88.
https://doi.org/10.1016/j.dsr.2011.12.007
[31]  Lenz, P. and Breger, M. (2005) Period04 User Guide. Communications in Asteroseismology, 146, 53-136. https://doi.org/10.1553/cia146s53
[32]  Scafetta, N. (2014) The Complex Planetary Synchronization Structure of the Solar System. Pattern Recognition in Physics, 2, 1-19.
https://doi.org/10.5194/prp-2-1-2014
[33]  Morlet (1983) Sampling Theory and Wave Propagation. In: Chen, C.H., Ed., Issues in Acoustic Signal—Image Processing and Recognition, NATO ASI Series F: Computer and System Sciences, Vol. 1, Springer, Berlin, 233-261.
https://doi.org/10.1007/978-3-642-82002-1_12
[34]  SeaSolve (2003) AutoSignal Pioneering Automated Signal Analysis and Advanced Filtering. User’s Manual. SeaSolve Software Inc., Framingham.
[35]  Torrence, C. and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 7, 69-78.
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[36]  Shannon, C.E. (1949) Communications in the Presence of Noise. Proceedings of the Institute of Radio Engineers, 37, 10-21.
https://doi.org/10.1109/JRPROC.1949.232969
[37]  Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G. and Steinhilber, F. (2012) Is There a Planetary Influence on Solar Activity? Astronomy and Astrophysics, 548, A88.
https://doi.org/10.1051/0004-6361/201219997
[38]  Yndestad, H. and Solheim, J.-E. (2017) The Influence of Solar System Oscillation on the Variability of the Total Solar Irradianc. New Astronomy, 51, 135-152.
https://doi.org/10.1016/j.newast.2016.08.020
[39]  Daubechies, L. (1992) Ten Lectures of Wavelet. SIAM Journal on Mathematical Analysis, 24, 499-519. https://doi.org/10.1137/0524031
[40]  Manley, G. (1974) Central England Temperature: Monthly Means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society, 100, 389-405.
https://doi.org/10.1002/qj.49710042511
[41]  Hadley Centre for Climate Change.
https://hadleyserver.metoffice.gov.uk/hadcet/cetml1659on.dat
[42]  Nordli, Ø., Przybylak, R., Ogilvie, A.E.J. and Isaksen, K. (2014) Long-Term Temperature Trends and Variability on Spitsbergen: The Extended Svalbard Airport Temperature Series 1898-2012. Polar Research, 33, 21349.
https://doi.org/10.3402/polar.v33.21349
[43]  Boitsov, V.D., Karsakov, A.L. and Trofimov, A.G. (2012) Atlantic WaterTemperature and Climate in the Barents Sea, 2000-2009. ICES Journal of Marine Science, 69, 833-840.
https://doi.org/10.1093/icesjms/fss075
[44]  Karsakov, A.L. (2009) Oceanographic Investigations Along the “Kola Meridian” Section in the Barents Sea in 1900-2008. PINRO Press, Murmansk, 139 p.
https://www.pinro.ru
[45]  Soon, W., Connolly, R. and Connolly, M. (2015) Re-Evaluating the Role of Solar Variability on Northern Hemisphere Temperature Trends Since the 19th Century. Earth-Science Review, 150, 409-452. https://doi.org/10.1016/j.earscirev.2015.08.010
[46]  Wyatt, M.G. and Curry, J.A. (2014) Role for Eurasian Arctic Shelf Sea Ice on a Secularly Varying Hemispheric Climate Signal during the 20th Century. Climate Dynamics, 43, 2763-2782.
https://doi.org/10.1007/s00382-013-1950-2
[47]  Enfield, D.B., Mestas-Nunez, A.M. and Trimble, P.J. (2001) The Atlantic Multidecadal Oscillation and Its Relation to Rainfall and River Flows in the Continental U.S. Geophysical Research Letters, 28, 2077-2080.
http://www.esrl.noaa.gov/psd/data/timeseries/AMO
https://doi.org/10.1029/2000GL012745
[48]  Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P.D., Davies, T.D., Portis, D., et al. (2004) Extending North Atllantic Oscillation Reconstruction Back to 1500. Atmospheric Science Letters, 2, 114-124. https://doi.org/10.1006/asle.2001.0044
[49]  Jones, P.D., Jónsson, T. and Wheeler, D. (1997) Extension to the North Atlantic Oscillation Using Early Instrumental Pressure Observations from Gibraltar and South-West Iceland. International Journal of Climatology, 17, 1422-1450.
https://crudata.uea.ac.uk/cru/data/nao
https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P
[50]  Stephenson, F.R., Morrison, L.V. and Hohenkerk, C.Y. (2016) Measurement of the Earth’s Rotation: 720 BC to AD 2015. Proceedings of the Royal Society A, 472.
https://doi.org/10.1098/rspa.2016.0404
[51]  Divine, D.V. and Dick, C. (2006) Historical Variability of Sea Ice Edge Position in the Nordic Seas. Journal of Geophysical Research, 111, C01001.
https://doi.org/10.1029/2004JC002851
[52]  Dawson, A., Elliott, L., Noone, S., Hickey, K., Holt, T., Wadhams, P. and Foster, I. (2004) Historical Storminess and Climate “See-Saws” in the North Atlantic Region. Marine Geology, 210, 247-259. https://doi.org/10.1016/j.margeo.2004.05.011
[53]  Polyakova, E.I., Journel, A.G., Polyakov, I.V. and Bhatt, U.S. (2006) Changing Relationship between the North Atlantic Oscillation and Key North Atlantic Climate Parameters. Geophysical Research Letters, 33, L04711.
https://doi.org/10.1029/2005GL024573
[54]  Steele, D. (2013) Perihelion Precession, Polar Ice and Global Warming. Journal of Cosmology, 22, 10106-10129.
[55]  Mazzarella, A. and Scafetta, N. (2018) The Little Ice Age Was 1.0-1.5 °C Cooler than Current Warm Period. Climate Dynamics, 51, 3957-3968.
https://doi.org/10.1007/s00382-018-4122-6
[56]  Muilwijk, M., Smedsrud, L.H., Ilicak, M. and Drange, H. (2018) Atlantic Water Heat Transport Variability in the 20th Century Arctic Ocean from a Global Ocean Model and Observations. Journal of Geophysical Research: Oceans, 123, 8159-8179.
https://doi.org/10.1029/2018JC014327
[57]  Cionco, R.G., Soon, W.-H. and Quaranta, N.E. (2020) On the Calculation of Latitudinal Insolation Gradients throughout the Holocene. Advances in Space Research, 56, 720-742. https://doi.org/10.1016/j.asr.2020.04.030
[58]  Andersen, C., Koç, N., Jennings, A. and Andrews, J.T. (2004) Nonuniform Response of the Major Surface Currents in the Nordic Seas to Insolation Forcing: Implications for the Holocene Climate Variability. Paleoceanography and Paleoclimatology, 19, PA2003.
https://doi.org/10.1029/2002PA000873
[59]  Geirsdóttir, á., Harning, D.J., Miller, G.H., Andrews, J.T., Zhong, Y. and Caseldine, C. (2020) Holocene History of Landscape Instability in Iceland: Can We Deconvolve the Impacts of Climate, Volcanism and Human Activity? Quaternary Science Reviews, 249, Article ID: 106633. https://doi.org/10.1016/j.quascirev.2020.106633
[60]  Lindzen, R.S. (1990) Dynamics in Atmospheric Physics. Cambridge Univ. Press, New York, 310 p. https://doi.org/10.1017/CBO9780511608285
[61]  Lindzen, R.S. (1994) Climate Dynamics and Global Change. Annual Review of Fluid Mechanics, 26, 353-378. https://doi.org/10.1146/annurev.fl.26.010194.002033
[62]  Cionco, R.G., Soon, W.-H., Elias, A.G. and Quaranta, N.E. (2020) Latitudinal Insolation Gradients throughout the Holocene II High Frequency Variations, Advances in Space Research, 66, 1992-2000. https://doi.org/10.1016/j.asr.2020.07.008
[63]  Connolly, R., Soon, W., Connolly, S., Baliunas, S., Berglund, J., Butler, C.J., et al. (2021) How Much Has the Sun Influenced Northern Hemisphere Temperature Trends? An Ongoing Debate. Research in Astronomy and Astrophysics.
https://arxiv.org/abs/2105.12126
[64]  Velasco Herrera, V.M., Mendoza, B. and Velasco Herrera, G. (2015) Reconstruction and Prediction of the Total Solar Irradiance from the Medieval Warm Period to the 21st Century. New Astronomy, 34, 221-233.
https://doi.org/10.1016/j.newast.2014.07.009
[65]  Scafetta, N. and Willson, R.C. (2014) ACRIM Total Solar Irradiance Satellite Composite Validation versus TSI Proxy Models. Astrophysics and Space Science, 350, 421-442. https://doi.org/10.1007/s10509-013-1775-9
[66]  Cionco, R.G., Valentini, J.E., Quaranta, N.E. and Soon, W.-H. (2017) Lunar Fingerprints in the Modulated Incoming Solar Radiation: In Situ Insolation and Latitudinal Insolation Gradients as Two Important Interpretative Metrics for Paleoclimatic Data Records and Theoretical Climate Modeling. New Astronomy, 58, 96-106. https://doi.org/10.1016/j.newast.2017.08.003
[67]  Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, M., et al. (2010) Solar Influences on Climate. Reviews of Geophysics, 48, RG 4001.
https://doi.org/10.1029/2009RG000282
[68]  Kwok, R., Kacimi, S., Webster, M.A., Kurtz, N.T. and Petty, A.A. (2020) Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. Journal of Geophysical Research: Oceans, 125, e2019JC016008.
https://doi.org/10.1029/2019JC016008
[69]  Scafetta, N., Willson, R.C., Lee, J.N. and Wu, D.L. (2019) Modeling Quiet Solar Luminosity Variability from TSI Satellite Measurements and Proxy Models during 1980-2018. Remote Sensing, 11, 2569. https://doi.org/10.3390/rs11212569
[70]  Vinje, T. and Goosse, H. (2003) ICE Extent Variations during Last Centuries. Final ACCSYS Science Conference, Arctic and Antarctic Research Institute, St. Petersburg 11-14 November 2003. (Unpublished)
[71]  Solheim, J.-E., Stordahl, K. and Humlum, O. (2012) The Long Sunspot Cycle 23 Predicts a Significant Temperature Decrease in Cycle 24. Journal of Atmospheric and Solar-Terrestrial Physics, 80, 267-284.
https://doi.org/10.1016/j.jastp.2012.02.008
[72]  Lansner, F. and Pepke Pedersen, J.O. (2018) Temperature Trends with Reduced Impact of Ocean Air Temperature. Energy & Environment, 29, 613-632.
https://doi.org/10.1177/0958305X18756670
[73]  Svalgaard, L. and Schatten, K.H. (2016) Reconstrunction of the Sunsspot Group Number: The Backbone Method. Solar Physics, 291, 2653-2684.
https://doi.org/10.1007/s11207-015-0815-8
[74]  Source: WDC-SILSO, Royal Observatory of Belgium, Brussels.
http://sidc.oma.be/silso
[75]  Mörner, N.-A. (2012) Solar Wind, Earth’s Rotation and Changes in Terrestrial Climate. In: Borrega, C.D.E. and Cruz, A.F.B., Eds., Solar Wind Emission, Technologies and Impacts, Nova Sci. Publ. Inc., New York, 47-66.
[76]  Mazzarella, A. (2008) Solar Forcing of Changes in Atmospheric Circulation, Earth’s Rotation and Climate. The Open Atmospheric Science Journal, 2, 181-184.
https://doi.org/10.2174/1874282300802010181
[77]  Duhau, S. and Martinez, E.A. (1995) On the Origin of the Length of the Day and the Geomagnetic Field on the Decadal Time Scale. Geophysical Research Letters, 22, 3283-3288. https://doi.org/10.1029/95GL03285
[78]  Duhau, S. and de Jager, C. (2012), On the Origin of the Bi-Decadal and the Semi-Secular Oscillations in the Length of the Day. In: Kenyon, S., et al., Eds., Geodesy for Planet Earth, International Association of Geodesy Symposia 136, Springer-Verlag, Berlin, 507-551.
https://doi.org/10.1007/978-3-642-20338-1_61
[79]  Piecuch, C.G., Ponte, R.M., Little, R.M., Buckley, M.W. and Fukumori, I. (2017) Mechanisms Underlying Recent Decadal Changes in Subpolar North Atlantic Ocean Heat Content. Journal of Geophysical Research: Oceans, 122, 7181-7197.
https://doi.org/10.1002/2017JC012845
[80]  Bryden, H., Johns, W.E., King, B.A., McCarthy, G., McDonagh, E.L., Moat, B.I. and Smeed, D.A. (2020) Reduction in Ocean Heat Transport at 26°N since 2008 Cools the Eastern Subpolar Gyre of the North Atlantic Ocean. Journal of Climate, 33, 1677-1689. https://doi.org/10.1175/JCLI-D-19-0323.1
[81]  Henriksson, G. (2021) Private Communication. (Unpublished)
[82]  Le Mouël, J.L., Lopes, F. and Courtillot, V. (2017) Identification of Gleissberg Cycles and a Rising Trend in a 315-Year-Long Series of Sunspot Numbers. Solar Physics, 292, 43.
https://doi.org/10.1007/s11207-017-1067-6
[83]  Berggren, A.M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., et al. (2009) A 600-Year Annual 10Be Record from the NGRIP Ice Core, Greenland. Geophysical Research Letters, 36, L11801. https://doi.org/10.1029/2009GL038004
[84]  McCracken, K.G., Beer, J., Steinhilber, F. and Abreu, J. (2013) A Phenomenological Study of the Cosmic Ray Variations over the Past 9400 Years, and Their Implications Regarding Solar Activity and the Solar Dynamo. Solar Physics, 386, 609-627.
https://doi.org/10.1007/s11207-013-0265-0
[85]  Beer, J., Tobias, S.M. and Weiss, N.O. (2017) On Long-Term Modulation of the Sun’s Magnetic Cycle. Monthly Notices Royal Astronomical Society, 473, 1596-1602.
https://doi.org/10.1093/mnras/stx2337
[86]  Dergachev, V.A. and Vasiliev, S.S. (2019) Long-Term Changes in the Concentration of Radiocarbon and the Nature of the Hallstatt Cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 182, 10-24. https://doi.org/10.1016/j.jastp.2018.10.005
[87]  Korte, M., Constable, C., Donadini, F. and Holme, R. (2011) Reconstructing the Holocene Geomagnetic Field. Earth and Planetary Science Letters, 312, 497-505.
https://doi.org/10.1016/j.epsl.2011.10.031
[88]  Parker, E.N. (1958) Suprathermal Particle Generation in the Solar Corona. Astrophysical Journal, 128, 677-685. https://doi.org/10.1086/146580
[89]  Mursula, K., Manoharan, P., Nandy, D., Tanskanen, E. and Verronen, P. (2013) Long-Term Solar Activity and Its Implications to the Heliosphere, Geomagnetic Activity, and the Earth’s Climate. Journal of Space Weather and Space Climate, 3, A21.
https://doi.org/10.1051/swsc/2013043
[90]  Sonett, C.P. (1984) Very Long Solar Periods and the Radiocarbon Record. Reviews of Geophysics and Space Physics, 22, 239-254.
https://doi.org/10.1029/RG022i003p00239
[91]  Stuiver, M., Braziunas, T.F., Becker, B. and Kromer, B. (1991) Climatic, Solar, Oceanic, and Geomagnetic Influences on Late-Glacial and Holocene Atmospheric 14C/12C Change. Quarternary Research, 35, 1-24.
https://doi.org/10.1016/0033-5894(91)90091-I
[92]  Shopov, Y. and Stoykova, D. (2011) Cycles of the Solar Wind Flux at the Front of the Earth’s Magnetosphere. AIP Conference Proceedings, 1356, 192.
https://doi.org/10.1063/1.3598105
[93]  Maliniemi, V., Asikainen, T. and Mursula, K. (2014) Spatial Distribution of Northern Hemisphere Winter Temperatures during Different Phases of the Solar Cycle. Journal of Geophysical Research: Atmospheres, 119, 9752-9764.
https://doi.org/10.1002/2013JD021343
[94]  Roy, I. (2018) Solar Cyclic Variability Can Modulate Winter Arctic Climate. Nature Scientific Reports, 8, 4864. https://doi.org/10.1038/s41598-018-22854-0
[95]  D’Andrea, W.D., Vaillencourt, Balascio, N.L., Werner, A., Roof, S.R., et al. (2012) Mild Little Ice Age and Unprecedented Recent Warmth in an 1800 Year Lake Sediment Record from Svalbard. Geology, 40, 1007-1010.
https://doi.org/10.1130/G33365.1
[96]  Zhou, L., Tinsley, B., Chu, H. and Xiao, Z. (2016) Correlations of Global Sea Surface Temperatures with the Solar Wind Speed. Journal of Atmospheric and Solar-Terrestrial Physics, 149, 232-239. https://doi.org/10.1016/j.jastp.2016.02.010
[97]  Makarova, L.N. and Shirochkov, A.V. (2012) Experimental and Modeling Evidence of the Solar Wind Energy Influence on the Earth Atmosphere. In: Borrega, C.D.E. and Cruz, A.F.B., Eds., Solar Wind Emission, Technologies and Impacts, Nova Sci. Publ. Inc., New York, 108-133.
[98]  Zubov, V., Rozanov, E, Shirochkov, A., Makarova, L., Egorova, T., Kiselev, A., et al. (2005) Modeling of the Joule Heating Influence on the Circulation and Ozone Concentration in the Middle Atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 155-162. https://doi.org/10.1016/j.jastp.2004.07.024
[99]  Treolar, N. (2002) Luni-Solar Tidal Influences on Climate Variability. International Journal of Climatology, 22, 1527-1542. https://doi.org/10.1002/joc.783
[100]  Hansen, J.M., Aagaard, T. and Kuijpers, A. (2015) Sea-Level Forcing by Synchronization of 56- and 74-Year Oscillations with the Moon’s Nodal Tide on the Northwest European Shelf (Eastern North Sea to Central Baltic Sea). Journal of Coastal Research, 31, 1041-1056.
https://doi.org/10.2112/JCOASTRES-D-14-00204.1
[101]  Yndestad, H., Turrell, W. and Ozhigin, V. (2008) Lunar Nodal Tide Effects on Variability of Sea Level, Temperature, and Salinity in the Faroe-Shetland Channel and the Barents Sea. Deep Sea Research Part I Oceanographic Research Papers, 55, 1201-1217.
https://doi.org/10.1016/j.dsr.2008.06.003
[102]  Yndestad, H. (2006) The Influence of the Lunar Nodal Cycle on Arctic Climate. ICES Journal of Marine Science, 63, 401-420.
https://doi.org/10.1016/j.icesjms.2005.07.015
[103]  Charvátová, I. and Hejda, P. (2014) Responses of the Basic Cycles of 178.7 and 2402 yr in Solar-Terrestrial Phenomena during the Holocene. Pattern Recognition in Physics, 2, 21-26.
https://doi.org/10.5194/prp-2-21-2014
[104]  Jose, P.D. (1965) Sun’s Motion and Sunspots. The Astronomical Journal, 70, 193-200. https://doi.org/10.1086/109714
[105]  Wolff, C.L. and Patrone, P.N. (2010) A New Way That Planets Can Affect the Sun. Solar Physics, 266, 227-246. https://doi.org/10.1007/s11207-010-9628-y
[106]  Cionco, R.G. and Compagnucci, R.H. (2012) Dynamical Characterization of the Last Prolonged Solar Minima. Advances in Space Research, 50, 1434-1444.
https://doi.org/10.1016/j.asr.2012.07.013
[107]  Fairbrigde, R.W. and Shirley, J.H. (1987) Prolonged Minima and the 179-yr Cycle of the Solar Inertial Motion. Solar Physics, 110, 191-220.
https://doi.org/10.1007/BF00148211
[108]  Wilson, I.R.G. (2013) The Venus-Earth-Jupiter Spin-Orbit Coupling Model. Pattern Recognition in Physics, 1, 147-158. https://doi.org/10.5194/prp-1-147-2013
[109]  Scafetta, N. (2016) High Resolution Coherence Analysis between Planetary and Climate Oscillations. Advances in Space Research, 57, 2121-2135.
https://doi.org/10.1016/j.asr.2016.02.029
[110]  Scafetta, N. (2011) Does the Sun Work as a Nuclear Fusion Amplifier of Planetary Tidal Forcing? A Proposal for a Physical Mechanism Based on the Mass-Luminosity Relation. The Journal of Atmospheric and Solar-Terrestrial Physics, 81-82, 27-40.
https://doi.org/10.1016/j.jastp.2012.04.002
[111]  Scafetta, N., Milani, F. and Bianchini, A. (2020) A 60-Year Cycle in the Meteorite Fall Frequency Suggests a Possible Interplanetary Dust Forcing of the Earth’s Climate Driven by Planetary Oscillations. Geophysical Research Letters, 47, e2020GL089954.
https://doi.org/10.1029/2020GL089954
[112]  Black, D.E., Peterson, L.C., Overpeck, J.T., Kaplan, A., Evans, M.N. and Kashgarian, M. (1999) Eight Centuries of North Atlantic Ocean Atmosphere Variability. Science, 286, 1709-1713. https://doi.org/10.1126/science.286.5445.1709
[113]  Scafetta, N. (2016) High Resolution Coherence Analysis between Planetary and Climate Oscillations. Advances in Space Research, 57, 2121-2135.
https://doi.org/10.1016/j.asr.2016.02.029
[114]  Milanković, M.V. (1941) Kanon der Erdbestrahlung und Seine Anwendung auf das Eiszeit-enproblem (Canon of Insolation and the Ice-Age Problem). Acad. Roy. Serbian, Editions Spec (1969 Translation by the Israel Program for Scientific Translation, Edited by B. Benny and I. Meroz), 133, 1-484.
[115]  Velasco Herrera, V.M., Soon, W. and Legates, D.R. (2021) Does Machine Learning Reconstruct Missing Sunspots and Forecast a New Solar Minimum? Advances in Space Research. https://doi.org/10.1016/j.asr.2021.03.023
[116]  Yndestad, H. (2021) Barents Sea Ice Edge Position Variability 1579-2020. Technical Report TN 210214.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133