全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermophysical Properties and Supercritical Heat Transfer Characteristics of R515A

DOI: 10.4236/ns.2021.136019, PP. 218-234

Keywords: Environmental Friendly Refrigerant, Supercritical Fluid R515A, Simulations, Heat Transfer Correlations, Shear-Stress Transport (SST) Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable alternative to replace conventional R134a, which can be beneficial for climate change. A considerable suggestion is R515A which possesses considerably lower global warming potential. The present simulations are designed to study supercritical fluid R515A under cooling conditions in horizontal position. The effect of pressure, mass flux, heat flux and tube diameter were considered for horizontal tube in the vicinity of pseudo critical temperature. Numerical investigations on heat transfer characteristics of supercritical fluid R515A were performed using widely used shear-stress transport (SST) model. Moreover, heat transfer correlations were developed and suggested to accurately predict Nusselt number within 10% accuracy. The simulation results showed about 3.98% average absolute deviation.

References

[1]  Jiang, Y.-R., Hu, P. and Ibrahim, A. (2020) Experimental and Numerical Investigation on Heat Transfer Characteristics of Supercritical R1234ze (E) Cooled in Horizontal Tubes. International Journal of Heat and Fluid Flow, 85, Article ID: 108650.
https://doi.org/10.1016/j.ijheatfluidflow.2020.108650
[2]  Zhang, G.-W., Hu, P., Chen, L.-X. and Liu, M.-H. (2018) Experimental and Simulation Investigation on Heat Transfer Characteristics of In-Tube Supercritical CO2 Cooling Flow. Applied Thermal Engineering, 143, 1101-1113.
https://doi.org/10.1016/j.applthermaleng.2018.07.108
[3]  Ibrahim, A., Peng, H., Riaz, A., Basit, M.A., Rashid, U. and Basit, A. (2021) Molten Salts in the Light of Corrosion Mitigation Strategies and Embedded with Nanoparticles to Enhance the Thermophysical Properties for CSP Plants. Solar Energy Materials and Solar Cells, 219, Article ID: 110768.
https://doi.org/10.1016/j.solmat.2020.110768
[4]  Tian, R., Wang, D., Zhang, Y., Ma, Y., Li, H. and Shi, L. (2019) Experimental Study of the Heat Transfer Characteristics of Supercritical Pressure R134a in a Horizontal Tube. Experimental Thermal and Fluid Science, 100, 49-61.
https://doi.org/10.1016/j.expthermflusci.2018.08.027
[5]  Mishra, S., Nayak, M. and Misra, A. (2020) Thermal Conductivity of Nanofluids-A Comprehensive Review. International Journal of Thermofluid Science and Technology, 7, 1-51.
https://doi.org/10.36963/IJTST.2020070301
[6]  Zhou, Y., Zhang, L., Bu, S., Sun, C., Xu, W., Xiao, Y. and Liu, L. (2020) Study on Heat Transfer Characteristics of the Whole Plate Fin Tube Cooler. International Journal of Thermofluid Science and Technology, 7, Article ID: 070204.
[7]  Islam, T., Parveen, N. and Asad, M. (2020) Hydromagnetic Natural Convection Heat Transfer of Copper-Water Nanofluid within a Right-Angled Triangular Cavity. International Journal of Thermofluid Science and Technology, 7, 1-18.
https://doi.org/10.36963/IJTST.2020070304
[8]  Marques, S.P. and Campo, A. (2019) Finite Strip Method Applied to Steady Heat Conduction and Thermal Radiation in a Planar Slab: Absorbing-Emitting Gray Material and Parallel Diffuse Surfaces. International Journal of Thermofluid Science and Technology, 6, Article ID: 19060102.
https://doi.org/10.36963/IJTST.19060102
[9]  Cui, Y., Wang, H., Wang, Y. (2019) Experimental and Numerical Studies on Convective Heat Transfer of Supercritical R-134a in a Horizontal Tube. International Journal of Heat and Mass Transfer, 136, 34-45.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.083
[10]  Wang, D., Tian, R., Zhang, Y., Li, L., Ma, Y., Shi, L. and Li, H. (2019) Heat Transfer Investigation of Supercritical R134a for Trans-Critical Organic Rankine Cycle System. Energy, 169, 542-557.
https://doi.org/10.1016/j.energy.2018.12.034
[11]  Ye, K., Zhang, Y., Yang, L., Zhao, Y., Li, N. and Xie, C. (2019) Modeling Convective Heat Transfer of Supercritical Carbon Dioxide Using an Artificial Neural Network. Applied Thermal Engineering, 150, 686-695.
https://doi.org/10.1016/j.applthermaleng.2018.11.031
[12]  Ehsan, M.M., Guan, Z. and Klimenko, A. (2018) A Comprehensive Review on Heat Transfer and Pressure Drop Characteristics and Correlations with Supercritical CO2 under Heating and Cooling Applications. Renewable and Sustainable Energy Reviews, 92, 658-675.
https://doi.org/10.1016/j.rser.2018.04.106
[13]  Huang, D., Wu, Z., Sunden, B. and Li, W. (2016) A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress. Applied Energy, 162, 494-505.
https://doi.org/10.1016/j.apenergy.2015.10.080
[14]  Wang, H., Leung, L.K., Wang, W. and Bi, Q. (2018) A Review on Recent Heat Transfer Studies to Supercritical Pressure Water in Channels. Applied Thermal Engineering, 142, 573-596.
https://doi.org/10.1016/j.applthermaleng.2018.07.007
[15]  Rahman, M.M., Dongxu J., Beni, M.S., Hei, H.C., He, W. and Zhao, J. (2016) Supercritical Water Heat Transfer for Nuclear Reactor Applications: A Review. Annals of Nuclear Energy, 97, 53-65.
https://doi.org/10.1016/j.anucene.2016.06.022
[16]  Zhang, S., Xu, X., Liu, C. and Dang, C. (2020) A Review on Application and Heat Transfer Enhancement of Supercritical CO2 in Low-Grade Heat Conversion. Applied Energy, 269, Article ID: 114962.
https://doi.org/10.1016/j.apenergy.2020.114962
[17]  Knez, Z., Markocic, E., Leitgeb, M., Primocic, M., Hrncic, M.K. and Skerget, M. (2014) Industrial Applications of Supercritical Fluids: A Review. Energy, 77, 235-243.
https://doi.org/10.1016/j.energy.2014.07.044
[18]  Huang, D. and Li, W. (2018) A Brief Review on the Buoyancy Criteria for Supercritical Fluids. Applied Thermal Engineering, 131, 977-987.
https://doi.org/10.1016/j.applthermaleng.2017.12.042
[19]  Dang, C. and Hihara, E. (2004) In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 1. Experimental Measurement. International Journal of Refrigeration, 27, 736-747.
https://doi.org/10.1016/j.ijrefrig.2004.04.018
[20]  Dang, C. and Hihara, E. (2004) In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 2. Comparison of Numerical Calculation with Different Turbulence Models. International Journal of Refrigeration, 27, 748-760.
https://doi.org/10.1016/j.ijrefrig.2004.04.017
[21]  Wang, J., Guan, Z., Gurgenci, H., Hooman, K., Veeraragavan, A. and Kang, X. (2018) Computational Investigations of Heat Transfer to Supercritical CO2 in a Large Horizontal Tube. Energy Conversion and Management, 157, 536-548.
https://doi.org/10.1016/j.enconman.2017.12.046
[22]  Zahlan, H., Groeneveld, D. and Tavoularis, S. (2015) Measurements of Convective Heat Transfer to Vertical Upward Flows of CO2 in Circular Tubes at Near-Critical and Supercritical Pressures. Nuclear Engineering and Design, 289, 92-107.
https://doi.org/10.1016/j.nucengdes.2015.04.013
[23]  Zhao, C.-R. and Jiang, P.-X. (2011) Experimental Study of In-Tube Cooling Heat Transfer and Pressure Drop Characteristics of R134a at Supercritical Pressures. Experimental Thermal and Fluid Science, 35, 1293-1303.
https://doi.org/10.1016/j.expthermflusci.2011.04.017
[24]  Wang, D., Tian, R., Zhang, Y., Li, L. and Shi, L. (2019) Experimental Comparison of the Heat Transfer of Supercritical R134a in a Micro-Fin Tube and a Smooth Tube. International Journal of Heat and Mass Transfer, 129, 1194-1205.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.052
[25]  Wang, D., Tian, R., Li, L., Dai, X. and Shi, L. (2020) Heat Transfer of R134a in a Horizontal Internally Ribbed Tube and in a Smooth Tube under Super Critical Pressure. Applied Thermal Engineering, 173, Article ID: 115208.
https://doi.org/10.1016/j.applthermaleng.2020.115208
[26]  Kang, K.-H. and Chang, S.-H. (2009) Experimental Study on the Heat Transfer Characteristics during the Pressure Transients under Supercritical Pressures. International Journal of Heat and Mass Transfer, 52, 4946-4955.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.005
[27]  Cui, Y.-L. and Wang, H.-X. (2018) Experimental Study on Convection Heat Transfer of R134a at Supercritical Pressures in a Vertical Tube for Upward and Downward Flows. Applied Thermal Engineering, 129, 1414-1425.
https://doi.org/10.1016/j.applthermaleng.2017.10.120
[28]  He, J., Dang, C. and Hihara, E. (2018) Experimental Investigation of Heat Transfer to Supercritical R245fa Flowing Vertically Upward in a Circular Tube. International Journal of Heat and Mass Transfer, 127, 286-295.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.126
[29]  He, J., Dang, C. and Hihara, E. (2018) Supercritical Heat Transfer Characteristics of R1233zd (E) in Vertically Upward Flow. International Journal of Heat and Mass Transfer, 127, 497-505.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.078
[30]  Jiang, P.-X., Zhao, C.-R. and Liu, B. (2012) Flow and Heat Transfer Characteristics of r22 and Ethanol at Supercritical Pressures. The Journal of Supercritical Fluids, 70, 75-89.
https://doi.org/10.1016/j.supflu.2012.06.011
[31]  Xiong, Z., Gu, H., Zhang, S. and Chen, J. (2017) Effect of Intermittent Heating on the Heat Transfer Performance of Supercritical R134a Flowing in a Pipe. Experimental Thermal and Fluid Science, 88, 434-443.
https://doi.org/10.1016/j.expthermflusci.2017.06.014
[32]  Liu, X., Xu, X., Liu, C., Ye, J., Li, H., Bai, W. and Dang, C. (2017) Numerical Study of the Effect of Buoyancy Force and Centrifugal Force on Heat Transfer Characteristics of Supercritical CO2 in Helically Coiled Tube at Various Inclination Angles. Applied Thermal Engineering, 116, 500-515.
https://doi.org/10.1016/j.applthermaleng.2017.01.103
[33]  Zhang, S., Xu, X., Liu, C., Liu, X., Ru, Z. and Dang, C. (2020) Experimental and Numerical Comparison of the Heat Transfer Behaviors and Buoyancy Effects of Supercritical CO2 in Various Heating Tubes. International Journal of Heat and Mass Transfer, 149, Article ID: 119074.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119074
[34]  Wang, K.-Z., Xu, X.-X., Liu, C., Bai, W.-J. and Dang, C.-B. (2017) Experimental and Numerical Investigation on Heat Transfer Characteristics of Supercritical CO2 in the Cooled Helically Coiled Tube. International Journal of Heat and Mass Transfer, 108, 1645-1655.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.004
[35]  Xiang, M., Guo, J., Huai, X. and Cui, X. (2017) Thermal Analysis of Supercritical Pressure CO2 in Horizontal Tubes under Cooling Condition. The Journal of Supercritical Fluids, 130, 389-398.
https://doi.org/10.1016/j.supflu.2017.04.009
[36]  Wang, K., Xu, X., Wu, Y., Liu, C. and Dang, C. (2015) Numerical Investigation on Heat Transfer of Supercritical CO2 in Heated Helically Coiled Tubes. The Journal of Supercritical Fluids, 99, 112-120.
https://doi.org/10.1016/j.supflu.2015.02.001
[37]  Palko, D. and Anglart, H. (2008) Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor. Science and Technology of Nuclear Installations, 2008, Article ID: 405072.
https://doi.org/10.1155/2008/405072
[38]  Liu, L., Xiao, Z., Yan, X., Zeng, X. and Huang, Y. (2013) Heat Transfer Deterioration to Supercritical Water in Circular Tube and Annular Channel. Nuclear Engineering and Design, 255, 97-104.
https://doi.org/10.1016/j.nucengdes.2012.09.025
[39]  Wen, Q. and Gu, H. (2011) Numerical Investigation of Acceleration Effect on Heat Transfer Deterioration Phenomenon in Supercritical Water. Progress in Nuclear Energy, 53, 480-486.
https://doi.org/10.1016/j.pnucene.2011.02.012
[40]  Podila, K. and Rao, Y. (2015) CFD Analysis of Flow and Heat Transfer in Canadian Supercritical Water Reactor Bundle. Annals of Nuclear Energy, 75, 1-10.
https://doi.org/10.1016/j.anucene.2014.07.039
[41]  Zhao, H., Li, X. and Wu, X. (2017) Numerical Investigation of Supercritical Water Turbulent Flow and Heat Transfer Characteristics in Vertical Helical Tubes. The Journal of Supercritical Fluids, 127, 48-61.
https://doi.org/10.1016/j.supflu.2017.03.016
[42]  Jaromin, M. and Anglart, H. (2013) A Numerical Study of Heat Transfer to Supercritical Water Flowing Upward in Vertical Tubes under Normal and Deteriorated Conditions. Nuclear Engineering and Design, 264, 61-70.
https://doi.org/10.1016/j.nucengdes.2012.10.028
[43]  Han, C.-L., Zhang, Y.-N., Yu, H., Lu, Y.-P. and Jiao, B. (2018) Numerical Analysis on Non-Uniform Flow and Heat Transfer of Supercritical Cryogenic Methane in a Heated Horizontal Circular Tube. The Journal of Supercritical Fluids, 138, 82-91.
https://doi.org/10.1016/j.supflu.2018.04.007
[44]  Zhang, P., Huang, Y., Shen, B. and Wang, R. (2011) Flow and Heat Transfer Characteristics of Supercritical Nitrogen in a Vertical Mini-Tube. International Journal of Thermal Sciences, 50, 287-295.
https://doi.org/10.1016/j.ijthermalsci.2010.06.014
[45]  Xiao, Y., Pan, J. and Gu, H. (2018) Numerical Investigation of Spacer Effects on Heat Transfer of Supercritical Fluid Flow in an Annular Channel. International Journal of Heat and Mass Transfer, 121, 343-353.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.030
[46]  Yang, Z., Cheng, X., Zheng, X. and Chen, H. (2019) Numerical Investigation on Heat Transfer of the Supercritical Fluid Upward in Vertical Tube with Constant Wall Temperature. International Journal of Heat and Mass Transfer, 128, 875-884.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.049
[47]  Kedzierski, M. and Lin, L. (2020) Pool Boiling of R515A, R1234ze (E), and R1233zd (E) on a Reentrant Cavity Surface. International Journal of Heat and Mass Transfer, 161, Article ID: 120252.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120252
[48]  Petersen, M., Pottker, G., Sethi, A. and Yana Motta, S.F. (2018) Refrigerants with Low Environmental Impact for Commercial Refrigeration Systems.
[49]  He, Y.-J., He, L.-F., Zheng, S.-P. and Chen, G.-M. (2020) Measurements of Isobaric Heat Capacity of R143a and R227ea at Liquid Phase by Quasi-Steady Scanning. Thermochimica Acta, 683, Article ID: 178464.
https://doi.org/10.1016/j.tca.2019.178464
[50]  Saengsikhiao, P., Taweekun, J., Maliwan, K., Saeung, S. and Theppaya, T. (2020) Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential. Energies, 13, 1514.
https://doi.org/10.3390/en13061514
[51]  Ibrahim, A., Hu, P., Jiang, Y.R., Riaz, A., Saleem, F., Dong, Y.F., Jia, L. and Zhao, P.P. (2021) Numerical Investigations on Supercritical Heat Transfer Characteristics of Environmental Friendly Refrigerants. International Journal of Clean Coal and Energy, 10, 21-40.
https://doi.org/10.4236/ijcce.2021.102002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133