We consider the design of structure-preserving discretization methods for the solution of systems of boundary controlled Partial Differential Equations (PDEs) thanks to the port-Hamiltonian formalism. We first provide a novel general structure of infinite-dimensional port-Hamiltonian systems (pHs) for which the Partitioned Finite Element Method (PFEM) straightforwardly applies. The proposed strategy is applied to abstract multidimensional linear hyperbolic and parabolic systems of PDEs. Then we show that instructional model problems based on the wave equation, Mindlin equation and heat equation fit within this unified framework. Secondly, we introduce the ongoing project SCRIMP (Simulation and Control of Interactions in Multi-Physics) developed for the numerical simulation of infinite-dimensional pHs. SCRIMP notably relies on the FEniCS open-source computing platform for the finite element spatial discretization. Finally, we illustrate how to solve the considered model problems within this framework by carefully explaining the methodology. As additional support, companion interactive Jupyter notebooks are available.
References
[1]
van der Schaft, A.J. and Maschke, B. (2002) Hamiltonian Formulation of Distributed-Parameter Systems with Boundary Energy Flow. Journal of Geometry and Physics, 42, 166-194. https://doi.org/10.1016/S0393-0440(01)00083-3
[2]
Le Gorrec, Y. and Matignon, D. (2013) Coupling between Hyperbolic and Diffusive Systems: A Port-Hamiltonian Formulation. European Journal of Control, 19, 505-512. https://doi.org/10.1016/j.ejcon.2013.09.003
[3]
van der Schaft, A.J. and Maschke, B. (2018) Geometry of Thermodynamic Processes. Entropy, 20, 1-23. https://doi.org/10.3390/e20120925
[4]
Vu, N.M.T., Lefèvre, L. and Maschke, B. (2016) A Structured Control Model for the Thermo-Magneto-Hydrodynamics of Plasmas in Tokamaks. Mathematical and Computer Modelling of Dynamical Systems, 3954, 1-26.
[5]
Rashad, R., Califano, F., Van der Schaft, A.J. and Stramigioli, S. (2020) Twenty Years of Distributed Port-Hamiltonian Systems: A Literature Review. IMA Journal of Mathematical Control and Information, 37, 1400-1422. https://doi.org/10.1093/imamci/dnaa018
[6]
Brugnoli, A., Haine, G., Serhani, A. and Vasseur, X. (2020) Supplementary Material for “Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control”. Dataset on Zenodo.
[7]
Brugnoli, A., Alazard, D., Pommier-Budinger, V. and Matignon, D. (2019) Port-Hamiltonian Formulation and Symplectic Discretization of Plate Models Part I: Mindlin Model for Thick Plates. Applied Mathematical Modelling, 75, 940-960. https://doi.org/10.1016/j.apm.2019.04.035
[8]
Cardoso-Ribeiro, F.L., Matignon, D. and Lefèvre, L. (2018) A Structure-Preserving Partitioned Finite Element Method for the 2D Wave Equation. IFAC-PapersOnLine, 51, 119-124. https://doi.org/10.1016/j.ifacol.2018.06.033
[9]
Serhani, A., Haine, G. and Matignon, D. (2019) Anisotropic Heterogeneous n-D Heat Equation with Boundary Control and Observation: I. Modeling as Port-Hamiltonian System. IFAC-PapersOnLine, 52, 51-56. https://doi.org/10.1016/j.ifacol.2019.07.009
[10]
Serhani, A., Haine, G. and Matignon, D. (2019) Anisotropic Heterogeneous n-D Heat Equation with Boundary Control and Observation: II. Structure-Preserving Discretization. IFAC-PapersOnLine, 52, 57-62. https://doi.org/10.1016/j.ifacol.2019.07.010
[11]
Toledo, J., Wu, Y., Ramírez, H. and Le Gorrec, Y. (2020) Observer-Based Boundary Control of Distributed Port-Hamiltonian Systems. Automatica, 120, Article ID: 109130. https://doi.org/10.1016/j.automatica.2020.109130
[12]
Krug, R., Mehrmann, V. and Schmidt, M. (2020) Nonlinear Optimization of District Heating Networks. Optimization and Engineering. https://doi.org/10.1007/s11081-020-09549-0
[13]
Golo, G., Talasila, V., Van der Schaft, A.J. and Maschke, B. (2004) Hamiltonian Discretization of Boundary Control Systems. Automatica, 40, 757-771. https://doi.org/10.1016/j.automatica.2003.12.017
[14]
Moulla, R., Lefèvre, L. and Maschke, B. (2012) Pseudo-Spectral Methods for the Spatial Symplectic Reduction of Open Systems of Conservation Laws. Journal of Computational Physics, 231, 1272-1292. https://doi.org/10.1016/j.jcp.2011.10.008
[15]
Trenchant, V., Ramírez, H., Le Gorrec, Y. and Kotyczka, P. (2018) Finite Differences on Staggered Grids Preserving the Port-Hamiltonian Structure with Application to an Acoustic Duct. Journal of Computational Physics, 373, 673-697. https://doi.org/10.1016/j.jcp.2018.06.051
[16]
Kotyczka, P., Maschke, B. and Lefèvre, L. (2018) Weak Form of Stokes-Dirac Structures and Geometric Discretization of Port-Hamiltonian Systems. Journal of Computational Physics, 361, 442-476. https://doi.org/10.1016/j.jcp.2018.02.006
[17]
Kotyczka, P. (2019) Numerical Methods for Distributed Parameter Port-Hamiltonian Systems. TUM University Press, Munich.
[18]
Kirby, R.C. and Kieu, T.T. (2015) Symplectic-Mixed Finite Element Approximation of Linear Acoustic Wave Equations. Numerische Mathematik, 130, 257-291. https://doi.org/10.1007/s00211-014-0667-4
[19]
Altmann, R. and Schulze, P. (2017) A Port-Hamiltonian Formulation of the Navier-Stokes Equations for Reactive Flows. Systems & Control Letters, 100, 51-55. https://doi.org/10.1016/j.sysconle.2016.12.005
[20]
Haine, G., Matignon, D. and Serhani, A. (2020) Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled N-Dimensional Wave Equation as Port-Hamiltonian System.
[21]
Joly, P. (2003) Variational Methods for Time-Dependent Wave Propagation Problems. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B. and Martin, P., Eds., Topics in Computational Wave Propagation: Direct and Inverse Problems, Volume 31 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, 201-264.
[22]
Boffi, D., Brezzi, F. and Fortin, M. (2013) Mixed Finite Element Methods and Applications. Volume 44 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-36519-5
[23]
Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E. and Wells, G.N. (2015) The FEniCS Project Version 1.5. Archive of Numerical Software, 3, 9-23.
[24]
Van der Schaft, A. and Jeltsema, D. (2014) Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control, 1, 173-378. https://doi.org/10.1561/2600000002
[25]
Courant, T.J. (1990) Dirac Manifolds. Transactions of the American Mathematical Society, 319, 631-661. https://doi.org/10.1090/S0002-9947-1990-0998124-1
[26]
Beattie, C., Mehrmann, V., Xu, H. and Zwart, H. (2018) Linear Port-Hamiltonian Descriptor Systems. Mathematics of Control, Signals, and Systems, 30, 17. https://doi.org/10.1007/s00498-018-0223-3
[27]
Mehrmann, V. and Morandin, R. (2019) Structure-Preserving Discretization for Port-Hamiltonian Descriptor Systems. 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, 11-13 December 2019, 6863-6868. https://doi.org/10.1109/CDC40024.2019.9030180
[28]
Renardy, M. and Rogers, R.C. (2004) An Introduction to Partial Differential Equations. Number 13 in Texts in Applied Mathematics. 2nd Edition, Springer-Verlag, New York.
[29]
Tucsnak, M. and Weiss, G. (2009) Observation and Control for Operator Semi-Groups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel.
[30]
Serhani, A., Matignon, D. and Haine, G. (2019) A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. In: Nielsen, F. and Barbaresco, F., Eds., Geometric Science of Information, Volume 11712 of Lecture Notes in Computer Science, Springer, Cham, 549-558. https://doi.org/10.1007/978-3-030-26980-7_57
[31]
Serhani, A., Matignon, D. and Haine, G. (2019) Partitioned Finite Element Method for Port-Hamiltonian Systems with Boundary Damping: Anisotropic Heterogeneous 2-D Wave Equations. IFAC-PapersOnLine, 52, 96-101. https://doi.org/10.1016/j.ifacol.2019.08.017
[32]
Payen, G., Matignon, D. and Haine, G. (2020) Modelling and Structure-Preserving Discretization of Maxwell’s Equations as Port-Hamiltonian System. Proceedings of the 21st IFAC World Congress, Volume 53, 7671-7676. https://doi.org/10.1016/j.ifacol.2020.12.1355
[33]
Kurula, M. and Zwart, H. (2015) Linear Wave Systems on n-D Spatial Domains. International Journal of Control, 88, 1063-1077.
[34]
Timoshenko, S. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells. Engineering Societies Monographs. McGraw-Hill, New York.
[35]
Brugnoli, A. (2020) A Port-Hamiltonian Formulation of Flexible Structures. Modelling and Structure-Preserving Finite Element Discretization. PhD Thesis, Université de Toulouse, ISAE-SUPAERO, Toulouse.
[36]
Arnold, D. and Lee, J. (2014) Mixed Methods for Elastodynamics with Weak Symmetry. SIAM Journal on Numerical Analysis, 52, 2743-2769. https://doi.org/10.1137/13095032X
[37]
Arnold, D. and Winther, R. (2002) Mixed Finite Elements for Elasticity. Numerische Mathematik, 92, 401-419. https://doi.org/10.1007/s002110100348
[38]
Arnold, D., Brezzi, F. and Douglas, J. (1984) Peers: A New Mixed Finite Element for Plane Elasticity. Japan Journal of Applied Mathematics, 1, 347. https://doi.org/10.1007/BF03167064
[39]
Beirão da Veiga, L., Mora, D. and Rodríguez, R. (2013) Numerical Analysis of a Locking-Free Mixed Finite Element Method for a Bending Moment Formulation of Reissner-Mindlin Plate Model. Numerical Methods for Partial Differential Equations, 29, 40-63. https://doi.org/10.1002/num.21698
[40]
Brugnoli, A., Alazard, D., Pommier-Budinger, V. and Matignon, D. (2019) Port-Hamiltonian Formulation and Symplectic Discretization of Plate Models Part II: Kirchhoff Model for Thin Plates. Applied Mathematical Modelling, 75, 961-981. https://doi.org/10.1016/j.apm.2019.04.036
[41]
Cardoso-Ribeiro, F.L., Matignon, D. and Lefèvre, L. (2020) A Partitioned Finite Element Method for Power-Preserving Discretization of Open Systems of Conservation Laws. IMA Journal of Mathematical Control and Information, 1-41.
[42]
Brugnoli, A., Cardoso-Ribeiro, F.L., Haine, G. and Kotyczka, P. (2020) Partitioned Finite Element Method for Power-Preserving Structured Discretization with Mixed Boundary Conditions. Proceedings of the 21st IFAC World Congress, Volume 53, 7647-7652. https://doi.org/10.1016/j.ifacol.2020.12.1351
[43]
Linge, S. and Langtangen, H.P. (2020) Programming for Computations Python. Springer, Berlin. https://doi.org/10.1007/978-3-030-16877-3
[44]
Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E. and Wells, G.N. (2014) Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations. ACM Transactions on Mathematical Software, 40, Article No. 9. https://doi.org/10.1145/2566630
[45]
Kirby, R.C. and Logg, A. (2007) Efficient Compilation of a Class of Variational Forms. ACM Transactions on Mathematical Software, 33, 17-es. https://doi.org/10.1145/1268769.1268771
[46]
Logg, A. and Wells, G.N. (2010) DOLFIN: Automated Finite Element Computing. ACM Transactions on Mathematical Software, 37, 20. https://doi.org/10.1145/1731022.1731030
[47]
Logg, A., Mardal, K.A., Wells, G.N., et al. (2012) Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin. https://doi.org/10.1007/978-3-642-23099-8
[48]
Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H. and Zhang, H. (2020) PETSc Users Manual. Technical Report ANL-95/11 Revision 3.13, Argonne National Laboratory.
[49]
Andersson, C., Führer, C. and Åkesson, J. (2015) Assimulo: A Unified Framework for ODE Solvers. Mathematics and Computers in Simulation, 116, 26-43. https://doi.org/10.1016/j.matcom.2015.04.007
[50]
Hindmarsh, A.C., Brown, P., Grant, K.E., Lee, S., Serban, R., Shumaker, D. and Woodward, C. (2005) SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Transactions on Mathematical Software (TOMS), 31, 363-396. https://doi.org/10.1145/1089014.1089020
[51]
Serhani, A. (2020) Systèmes couplés d’EDPs, vus comme des systèmes Hamiltoniens à ports avec dissipation: Analyse théorique et simulation numérique. PhD Thesis, Université de Toulouse, ISAE-SUPAERO, Toulouse.
[52]
Abhyankar, S., Brown, J., Constantinescu, E., Ghosh, D., Smith, B. and Zhang, H. (2018) PETSc/TS: A Modern Scalable ODE/DAE Solver Library.
[53]
Chaturantabut, S., Beattie, C. and Gugercin, S. (2016) Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing, 38, B837-B865. https://doi.org/10.1137/15M1055085
[54]
Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. and Mehrmann, V. (2018) On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing, 40, A331-A365. https://doi.org/10.1137/17M1125303
[55]
Cohen, G. and Grob, P. (2007) Mixed Higher Order Spectral Finite Elements for Reissner-Mindlin Equations. SIAM Journal on Scientific Computing, 29, 986-1005. https://doi.org/10.1137/050642332
[56]
Benner, P. and Heiland, J. (2015) Time-Dependent Dirichlet Conditions in Finite Element Discretizations. ScienceOpen Research. https://doi.org/10.14293/S2199-1006.1.SOR-MATH.AV2JW3.v1
[57]
Cardoso-Ribeiro, F., Brugnoli, A., Matignon, D. and Lefèvre, L. (2019) Port-Hamiltonian Modeling, Discretization and Feedback Control of a Circular Water Tank. 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, 11-13 December 2019, 6881-6886. https://doi.org/10.1109/CDC40024.2019.9030007
[58]
Kotyczka, P. and Lefèvre, L. (2018) Discrete-Time Port-Hamiltonian Systems: A Definition Based on Symplectic Integration. Systems and Control Letters, 133, Article ID: 104530. https://doi.org/10.1016/j.sysconle.2019.104530