|
Pure Mathematics 2021
一类分数阶三点边值问题解的存在性
|
Abstract:
[1] | Bendouma, B., Cabada, A. and Hammoudi, A. (2019) Three-Point Boundary Value Problems for Conformable Frac-tional Differential Equations. Archivum Mathematicum, 55, 69-82. https://doi.org/10.5817/AM2019-2-69 |
[2] | Bai, Z., Cheng, Y. and Sun, S. (2020) On Solutions of a Class of Three-Point Fractional Boundary Value Problems. Boundary Value Problems, 11, 1-12. https://doi.org/10.1186/s13661-019-01319-x |
[3] | 董晓玉, 白占兵, 张伟. 具有适型分数阶导数的非线性特征值问题的正解[J]. 山东科技大学学报(自然科学版), 2016, 35(3): 85-91. |
[4] | Li, Y. and Jiang, W. (2019) Existence and Nonexistence of Positive Solutions for Fractional Three-Point Boundary Value Problems with a Parameter. Journal of Function Spaces, 34, 1-10. https://doi.org/10.1155/2019/9237856 |
[5] | 郑春华, 马睿, 傅霞. 一类带积分边值条件的高阶时滞分数阶微分方程解的存在性[J]. 西南民族大学学报(自然科学版), 2020, 46(3): 303-309. |
[6] | Bekri, Z. and Benaicha, S. (2017) Existence of Solution for a Nonlinear Three-Point Boundary Value Problem. Boletim Sociedad Paranaense de Matematica, 14, 1120-1134. https://doi.org/10.5269/bspm.v38i1.34767 |
[7] | Zouaoui, B. and Slimane, B. (2020) Existence of Solution for Nonlinear Fourth-Order Three-Point Boundary Value Problem. Boletim Sociedad Paranaense de Matematica, 38, 67-82. https://doi.org/10.5269/bspm.v38i1.34767 |
[8] | 庞杨, 韦煜明. Caputo分数阶微分方程三点边值问题解的存在性[J]. 应用泛函分析学报, 2018, 20(1): 63-76. |
[9] | Sun, Y. and Zhu, C. (2013) Existence of Positive Solutions for Singular Fourth-Order Three-Point Boundary Value Problems. Advances in Difference Equations, 51, 1-13. https://doi.org/10.1186/1687-1847-2013-51 |
[10] | Batarfi, H. and Losada, J. (2015) Three-Point Boundary Value Problems for Conformable Fractional Differential Equations. Journal of Function Spaces, 34, 1-6. https://doi.org/10.1155/2015/706383 |
[11] | Khalil, R. (2014) A New Definition of Fractional Derivative. Journal Computational and Applied Mathematics, 264, 65-70. https://doi.org/10.1016/j.cam.2014.01.002 |
[12] | Deimling, K. (1985) Nonlinear Functional Analysis. Springer, Berlin. https://doi.org/10.1007/978-3-662-00547-7 |